Publications by authors named "Vlatko Vedral"

Exciton transfer along a bio-polymer is essential for many biological processes, for instance, light harvesting in photosynthetic biosystems. Here we apply a new witness of non-classicality to this phenomenon, to conclude that, if an exciton can mediate the coherent quantum evolution of a photon, then the exciton is non-classical. We then propose a general qubit model for the quantum transfer of an exciton along a bio-polymer chain, also discussing the effects of environmental decoherence.

View Article and Find Full Text PDF

Approximation based on perturbation theory is the foundation for most of the quantitative predictions of quantum mechanics, whether in quantum many-body physics, chemistry, quantum field theory, or other domains. Quantum computing provides an alternative to the perturbation paradigm, yet state-of-the-art quantum processors with tens of noisy qubits are of limited practical utility. Here, we introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches, enabling the solution of large practical quantum problems using limited noisy intermediate-scale quantum hardware.

View Article and Find Full Text PDF

How irreversibility arises in a universe with time-reversal symmetric laws is a central problem in physics. In this Letter, we discuss a radically different take on the emergence of irreversibility, adopting the recently proposed constructor theory framework. Irreversibility is expressed as the requirement that a task is possible, while its inverse is not.

View Article and Find Full Text PDF

We show that, by using temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time evolution.

View Article and Find Full Text PDF

Pseudo-density matrices are a generalisation of quantum states and do not obey monogamy of quantum correlations. Could this be the solution to the paradox of information loss during the evaporation of a black hole? In this paper we discuss this possibility, providing a theoretical proposal to extend quantum theory with these pseudo-states to describe the statistics arising in black-hole evaporation. We also provide an experimental demonstration of this theoretical proposal, using a simulation in optical regime, that tomographically reproduces the correlations of the pseudo-density matrix describing this physical phenomenon.

View Article and Find Full Text PDF

We propose a thermodynamic refrigeration cycle which uses indefinite causal orders to achieve nonclassical cooling. The cycle cools a cold reservoir while consuming purity in a control qubit. We first show that the application to an input state of two identical thermalizing channels of temperature T in an indefinite causal order can result in an output state with a temperature not equal to T.

View Article and Find Full Text PDF

In the Aharonov-Bohm (AB) effect, a superposed charge acquires a detectable phase by enclosing an infinite solenoid, in a region where the solenoid's electric and magnetic fields are zero. Its generation seems therefore explainable only by the local action of gauge-dependent potentials, not of gauge-independent fields. This was recently challenged by Vaidman, who explained the phase by the solenoid's current interacting with the electron's field (at the solenoid).

View Article and Find Full Text PDF

We study an arbitrary nonequilibrium dynamics of a quantum bipartite system coupled to a reservoir. For its characterization, we present a fluctuation theorem (FT) that explicitly addresses the quantum correlation of subsystems during the thermodynamic evolution. To our aim, we designate the local and the global states altogether in the time-forward and the time-reversed transition probabilities.

View Article and Find Full Text PDF

Owing to the ubiquity of synchronization in the classical world, it is interesting to study its behavior in quantum systems. Though quantum synchronization has been investigated in many systems, a clear connection to quantum technology applications is lacking. We bridge this gap and show that nanoscale heat engines are a natural platform to study quantum synchronization and always possess a stable limit cycle.

View Article and Find Full Text PDF

The accurate and reliable description of measurement devices is a central problem in both observing uniquely nonclassical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument.

View Article and Find Full Text PDF

In the midst of the COVID-19 pandemic, science is crucial to inform public policy. At the same time, mistrust of scientists and misinformation about scientific facts are rampant. Six scientists, actively involved in outreach, reflect on how to build a better understanding and trust of science.

View Article and Find Full Text PDF

The capacity of a channel is known to be equivalent to the highest rate at which it can generate entanglement. Analogous to entanglement, the notion of a causality measure characterizes the temporal aspect of quantum correlations. Despite holding an equally fundamental role in physics, temporal quantum correlations have yet to find their operational significance in quantum communication.

View Article and Find Full Text PDF

Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information.

View Article and Find Full Text PDF

Several experimental and theoretical studies report instances of concerted or correlated multiple proton tunnelling in solid phases of water. Here, we construct a pseudo-spin model for the quantum motion of protons in a hexameric HO ring and extend it to open system dynamics that takes environmental effects into account in the form of O-H stretch vibrations. We approach the problem of correlations in tunnelling using quantum information theory in a departure from previous studies.

View Article and Find Full Text PDF

Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g.

View Article and Find Full Text PDF

The NOT gate that flips a classical bit is ubiquitous in classical information processing. However its quantum analogue, the universal NOT (UNOT) gate that flips a quantum spin in any alignment into its antipodal counterpart is strictly forbidden. Here we explore the connection between this discrepancy and how UNOT gates affect classical and quantum correlations.

View Article and Find Full Text PDF

Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically.

View Article and Find Full Text PDF

It is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and quantum regime.

View Article and Find Full Text PDF

We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states.

View Article and Find Full Text PDF

Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations.

View Article and Find Full Text PDF

Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the green sulfur bacteria family, light is absorbed by large antenna complexes called chlorosomes to create an exciton. The exciton is transferred to a protein baseplate attached to the chlorosome, before migrating through the Fenna-Matthews-Olson complex to the reaction center.

View Article and Find Full Text PDF

A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena.

View Article and Find Full Text PDF

We consider the problem of characterizing the set of input-output correlations that can be generated by an arbitrarily given quantum measurement. Our main result is to provide a closed-form, full characterization of such a set for any qubit measurement, and to discuss its geometrical interpretation. As applications, we further specify our results to the cases of real and complex symmetric, informationally complete measurements and mutually unbiased bases of a qubit, in the presence of isotropic noise.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb51tbsqk4fleemjuj5u8fe3jmjn34ial): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once