Publications by authors named "Vlasis G Mavrantzas"

Organic compounds constitute a substantial part of atmospheric particulate matter not only in terms of mass concentration but also in terms of distinct functional groups. The glass transition temperature provides an indirect way to investigate the phase state of the organic compounds, playing a crucial role in understanding their behavior and influence on aerosol processes. Molecular dynamics (MD) simulations were implemented here to predict the glass transition temperature () of atmospherically relevant organic compounds as well as the influence of their functional groups and length of their carbon chain.

View Article and Find Full Text PDF

Computer-generated atomistic microstructures of atmospheric nanoparticles are geometrically analyzed using Delaunay tessellation followed by Monte Carlo integration to compute their free and accessible volume. The nanoparticles studied consist of -pinonic acid (a biogenic organic aerosol component), inorganic ions (sulfate and ammonium), and water. Results are presented for the free or unoccupied volume in different domains of the nanoparticles and its dependence on relative humidity and organic content.

View Article and Find Full Text PDF

To deal with divergences of functional integrals in field-theoretic simulations (FTS) of complex fluids, the microscopic density is often smeared by being replaced by a convoluted one, typically using a Gaussian masking function. The smearing changes radically the nature of nonbonded interactions of the original microscopic density and results in a regularized model that is free of ultraviolet (UV) divergences. In this work, we first resolve a few fundamental issues related with the use of masking functions for δ-interactions in FTS and then we detail a new methodology that builds on the concept of multiconvoluted inverse potentials and a principle of model equivalence for statistical weights to accommodate more physically relevant interactions in FTS.

View Article and Find Full Text PDF

A coarse-grained model comprising short- and long-range effective potentials, parametrized with the iterative Boltzmann inversion (IBI) method, is presented for capturing micelle formation in aqueous solutions of ionic surfactants using as a model system sodium dodecyl sulfate (SDS). In the coarse-grained (CG) model, each SDS molecule is represented as a sequence of four beads while each water molecule is modeled as a single bead. The proposed CG scheme involves ten potential energy functions: four of them describe bonded interactions and control the distribution functions of intramolecular degrees of freedom (bond lengths, valence angles, and dihedrals) along an SDS molecule while the other six account for intermolecular interactions between pairs of SDS and water beads and control the radial distribution functions.

View Article and Find Full Text PDF

We discuss the functional inverse problem in field-theoretic simulations for realistic pairwise potentials such as the Morse potential (widely used in particle simulations as an alternative to the 12-6 Lennard-Jones one), and we propose the following two solutions: (a) a numerical one based on direct inversion on a regular grid or deconvolution and (b) an analytical one by expressing attractive and repulsive contributions to the Morse potential as higher-order derivatives of the Dirac delta function; the resulting system of ordinary differential equations in the saddle-point approximation is solved numerically with appropriate model-consistent boundary conditions using a Newton-Raphson method. For the first time, exponential-like, physically realistic pair interactions are analytically treated and incorporated into a field-theoretic framework. The advantages and disadvantages of the two approaches are discussed in detail in connection with numerical findings from test simulations for the radial distribution function of a monatomic fluid at realistic densities providing direct evidence for the capability of the analytical method to resolve structural features down to the Angstrom scale.

View Article and Find Full Text PDF

Detailed molecular dynamics (MD) simulations are employed to study how the presence of adsorbed domains and nanoparticle bridging chains affect the structural, conformational, thermodynamic, and dynamic properties of attractive polymer nanocomposite melts in the semi-dilute regime. As a model system we have chosen an unentangled poly(ethylene glycol) (PEG) matrix containing amorphous spherical silica nanoparticles with different diameters and at different concentrations. Emphasis is placed on properties such as the polymer mass density profile around nanoparticles, the compressibility of the system, the mean squared end-to-end distance of PEG chains, their orientational and diffusive dynamics, the single chain form factor, and the scattering functions.

View Article and Find Full Text PDF

Modern field-theoretic simulations of complex fluids and polymers are constructed around a particle-to-field transformation that brings an inverse potential u in the model equations. This has restricted the application of the framework to systems characterized by relatively simple pairwise interatomic interactions; for example, excluded volume effects are treated through the use of δ-function interactions. In this study, we first review available nonbonded pair interactions in field-theoretic models and propose a classification.

View Article and Find Full Text PDF

In a recent reformulation of the Marrucci-Ianniruberto constitutive equation for the rheology of entangled polymer melts in the context of nonequilibrium thermodynamics, rather large values of the convective constraint release parameter had to be used in order for the model not to violate the second law of thermodynamics. In this work, we present an appropriate modification of the model, which avoids the splitting of the evolution equation for the conformation tensor into an orientation and a stretching part. Then, thermodynamic admissibility simply dictates that ≥ 0, thus allowing for more realistic values of to be chosen.

View Article and Find Full Text PDF

We address the problem of the quantitative prediction of micelle formation in dilute aqueous solutions of ionic surfactants using sodium dodecyl sulfate (SDS) as a model system through a computational approach that involves three steps: (a) execution of coarse-grained simulations based on the MARTINI force field (with slightly modified parameters to afford the formation of large micelles); (b) reverse mapping of the final self-assembled coarse-grained configuration into an all-atom configuration; and (c) final relaxation of this all-atom configuration through short-time (on the order of a few tens of nanoseconds), detailed isothermal-isobaric molecular dynamics simulations using the CHARMM36 force field. For a given concentration of the solution in SDS molecules, the modified MARTINI-based coarse-grained simulations lead to the formation of large micelles characterized by mean aggregation numbers above the experimentally observed ones. However, by reintroducing the detailed chemical structure through a strategy that solves a well-defined geometric problem and re-equilibrating, these large micellar aggregates quickly dissolve to smaller ones and equilibrate to sizes that perfectly match the average micelle size measured experimentally at the given surfactant concentration.

View Article and Find Full Text PDF

We present results from a direct statistical analysis of long molecular dynamics (MD) trajectories for the orientational relaxation of individual ring molecules in blends with equivalent linear chains. Our analysis reveals a very broad distribution of ring relaxation times whose width increases with increasing ring/linear molecular length and increasing concentration of the blend in linear chains. Dynamic heterogeneity is also observed in the pure ring melts but to a lesser extent.

View Article and Find Full Text PDF

A combined experimental and molecular dynamics (MD) study is performed to investigate the effect of polymer concentration on the zero shear rate viscosity η of a salt-free aqueous solution of poly(,-dimethylaminoethyl methacrylate) (PDMAEMA), a flexible thermoresponsive weak polyelectrolyte with a bulky 3-methyl-1,1-diphenylpentyl unit as the terminal group. The study is carried out at room temperature ( = 298 K) with relatively short PDMAEMA chains (each containing = 20 monomers or repeat units) at a fixed degree of ionization (α = 100%). For the MD simulations, a thorough validation of several molecular mechanics force fields is first undertaken for assessing their capability to accurately reproduce the experimental observations and established theoretical laws.

View Article and Find Full Text PDF

We present results for the steady state shear rheology of non-concatenated, unentangled and marginally entangled ring poly(ethylene oxide) (PEO) melts from detailed, atomistic nonequilibrium molecular dynamics (NEMD) simulations, and compare them to the behavior of the corresponding linear melts. The applied flow field spans a wide range of shear rates, from the linear (Newtonian) to the highly non-linear (described by a power law) regime. For all melts studied, rings are found to exhibit shear thinning but to a lesser degree compared to linear counterparts, mostly due to their reduced deformability and stronger resistance to alignment in the direction of flow.

View Article and Find Full Text PDF

Detailed molecular dynamics (MD) simulations of model single-walled carbon nanotube (CNT) membranes based on atactic poly(methyl methacrylate) (aPMMA) indicate that PMMA chains significantly penetrate nanotubes through their faces. They predict very high-density values of the polymer in the interfacial area around the CNT mouths that can exceed by 50% the density of the bulk polymer at the same thermodynamic conditions. This dramatically decreases the diffusivity of relatively small penetrants (in our study, water molecules) in the nanocomposite membrane, because of the exceedingly long times needed by these small molecules to diffuse through such a dense interfacial layer before accessing the interior of the nanotubes where they can travel really fast.

View Article and Find Full Text PDF

Long MD simulations are carried out using a detailed all-atom force field to investigate the effect of pH or, equivalently, degree of ionization α (= 0, 50, 100%) and degree of polymerization N (= 20, 23, 46, 70, and 110) on the structure and dynamics of poly(acrylic acid) (PAA) at infinite dilution. To ensure the validity and add to the reliability of our research conclusions, a systematic validation of several molecular mechanics force fields is performed. It is observed that the generalized AMBER force field in combination with the RESP charge fitting method best describes both the structural and dynamical behavior of PAA in comparison to experimentally obtained data.

View Article and Find Full Text PDF

3-Arm PMMAs end-functionalized by pyrene were designed as dispersing/stabilizing agents for the liquid-phase exfoliation of graphite in low-boiling point solvents like chloroform. The synthetic procedure comprised ARGET ATRP controlled polymerization, click chemistry and the quaternization reaction of triazole, ensuring tailor-made, well-defined pyrene-functional star PMMAs. Among a series of different pyrene-functional macromolecular topologies, the (PMMA-py2)3 proved the most efficient exfoliation agent giving relatively high graphene concentration (0.

View Article and Find Full Text PDF

We examine the high-temperature phase behaviour of α-unsubstituted sexithiophene (α-6T) by means of Molecular Dynamics (MD) and Monte Carlo (MC) simulations using a recently developed state-of-the-art algorithm based on internal bridging moves. In the MD simulations, a realistic fully flexible united-atom model is used. In the MC simulations, a stiffer version of this united-atom model is implemented by restricting atoms on thiophene rings to remain strictly co-planar by employing holonomic constraints for all bond lengths and intra-ring bond bending angles; on the other hand, inter-ring torsion and bond bending angles are considered to be fully flexible subject to suitable potential energy functions.

View Article and Find Full Text PDF

Molecular dynamics (MD) is used to simulate a model atactic poly(methyl methacrylate) (PMMA) system in which carbon nanotubes (CNTs) have been randomly dispersed. Our purpose is to elucidate the equilibrium structure and dynamic behavior of PMMA chains at the interface with a CNT. CNTs with different diameters and at different concentrations in the host PMMA matrix are studied, and their effect on the equilibrium squared radius-of-gyration and squared end-to-end distance of PMMA chains is examined.

View Article and Find Full Text PDF

We present results from detailed, atomistic molecular dynamics (MD) simulations of pure, strictly monodisperse linear and ring poly(ethylene oxide) (PEO) melts under equilibrium and nonequilibrium (shear flow) conditions. The systems examined span the regime of molecular weights () from sub-Rouse ( < ) to reptation ( ∼ 10 ), where denotes the characteristic entanglement molecular weight of linear PEO. For both PEO architectures (ring and linear), the predicted chain center-of-mass self-diffusion coefficients as a function of PEO are in remarkable agreement with experimental data.

View Article and Find Full Text PDF

Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-CH), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions.

View Article and Find Full Text PDF

We have performed molecular dynamics (MD) simulations of melt systems consisting of a small number of long ring poly(ethylene oxide) (PEO) probes immersed in a host matrix of linear PEO chains and have studied their microscopic dynamics and topology as a function of the molecular length of the host linear chains. Consistent with a recent neutron spin echo spectroscopy study (Goossen et al., 2015, , 148302), we have observed that the segmental dynamics of the probe ring molecules is controlled by the length of the host linear chains.

View Article and Find Full Text PDF

Atomistic configurations of pure, precisely monodisperse ring poly(ethylene oxide) (PEO) melts accumulated in the course of very long molecular dynamics (MD) simulations at = 413 K and = 1 atm have been subjected to a detailed geometric analysis involving three steps (reduction to ensembles of coarse-grained paths, triangulation of the resulting three-dimensional polygons, and analysis of interpenetrations using vector calculus) in order to locate ring-ring threading events and quantify their strength and survival times. A variety of threading situations have been identified corresponding to single and multiple penetrations. The percentage of inter-ring threadings that correspond to full penetrations has also been quantified.

View Article and Find Full Text PDF

Pyrene-functional PMMAs were prepared via ATRP-controlled polymerization and click reaction, as efficient dispersing agents for the exfoliation of few-layered graphene sheets (GS) in easily processable low boiling point chloroform. In parallel, detailed atomistic simulations showed fine dispersion of the GS/polymer hybrids in good agreement with the experiment. Moreover, the molecular dynamics simulations revealed interesting conformations (bridges, loops, dangling ends, free chains) of GS/polymer hybrids and allowed us to monitor their time evolution both in solution and in the polymer nanocomposite where the solvent molecules were replaced with PMMA chains.

View Article and Find Full Text PDF

A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: