A survey was conducted in June 2022 among the graduate RPNs in the field of psychiatry and mental health. 48 people responded and gave their views on their implementation and job satisfaction. The results were generally positive.
View Article and Find Full Text PDFAdvanced practice nursing is intended for children, adolescents, adults and the elderly. In the field of mental health, this population-based approach allows advanced practice nurses to apply all of their skills for individualized and adapted care. Whether these professionals work in child and adolescent psychiatry or in psychiatry for the elderly, their practices have many similarities.
View Article and Find Full Text PDFIntroduction: In schizophrenic disorders, supportive psychosocial therapies have been used as adjuncts to pharmacotherapy to help alleviate residual symptoms and to improve social functioning and quality of life. Among these therapies, psychoeducational therapies showed a significant efficacy on improving drug adherence and on reducing relapses. However, according to the French Health Agency, fewer than 10% of psychiatric structures in France offer registered psychoeducation programs.
View Article and Find Full Text PDFThe dynamics of the reduced form of the blue copper protein pseudoazurin from Alcaligenes faecalis S-6 was investigated using (15)N relaxation measurements with a focus on the dynamics of the micro- to millisecond time scale. Different types of conformational exchange processes are observed in the protein on this time scale. At low pH, the protonation of the C-terminal copper-ligated histidine, His81, is observed.
View Article and Find Full Text PDFMethylamine can be used as the sole carbon source of certain methylotrophic bacteria. Methylamine dehydrogenase catalyzes the conversion of methylamine into formaldehyde and donates electrons to the electron transfer protein amicyanin. The crystal structure of the complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus has been determined, and the rate of electron transfer from the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase to the copper ion of amicyanin in solution has been determined.
View Article and Find Full Text PDFCopper-containing nitrite reductase is able to catalyze the reduction of nitrite with a turnover rate of several hundreds per second. Electrons for the reaction are donated by the electron transfer protein pseudoazurin. The process of protein complex formation, electron transfer and dissociation must occur on the millisecond timescale to enable the fast turnover of the enzyme.
View Article and Find Full Text PDFA two-thiol reactive lanthanide-DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) chelate, CLaNP-3 (CLaNP=caged lanthanide NMR probe), was synthesized for the rigid attachment to cysteine groups on a protein surface, and used to obtain long-range-distance information from the {15N,1H} HSQC spectra of the protein-lanthanide complex. The DOTA ring exhibits several isomers that are in exchange; however, single resonances were observed for most amide groups in the protein, allowing determination of a single, apparent magnetic-susceptibility tensor. Pseudocontact shifts caused by Yb-containing CLaNP-3 were observed for atoms at 15-35 A from the metal.
View Article and Find Full Text PDFDespite decades of research, the mechanism by which coenzyme B12 (adenosylcobalamin, AdoCbl)-dependent enzymes promote homolytic cleavage of the cofactor's Co-C bond to initiate catalysis has continued to elude researchers. In this work, we utilized magnetic circular dichroism spectroscopy to explore how the electronic structure of the reduced B12 cofactor (i.e.
View Article and Find Full Text PDFGlutamate mutase (GM) is a cobalamin-dependent enzyme that catalyzes the reversible interconversion of L-glutamate and L-threo-3-methylaspartate via a radical-based mechanism. To initiate catalysis, the 5'-deoxyadenosylcobalamin (AdoCbl) cofactor's Co-C bond is cleaved homolytically to generate an adenosyl radical and Co2+ Cbl. In this work, we employed a combination of spectroscopic and computational tools to evaluate possible mechanisms by which the Co-C bond is activated for homolysis.
View Article and Find Full Text PDFMany organic cofactors are both rare and reactive. They are usually in low abundance, which poses problems for efficient collision-based targeting to dependent enzymes, whereas their reactivity is problematic for side reactions. Sequestration and escorted delivery presents one solution to this conundrum, but such porters, if they exist, are mostly unknown.
View Article and Find Full Text PDFThe electron paramagnetic resonance (EPR) spectrum of an intermediate freeze trapped during the steady state of the reaction catalyzed by the adenosylcobalamin (AdoCbl)-dependent enzyme, methylmalonyl-CoA mutase, has been studied. The EPR spectrum is that of a hybrid triplet spin system created as a result of strong electron-electron spin coupling between an organic radical and the low-spin Co(2+) in cob(II)alamin. The spectrum was analyzed by simulation to obtain the zero-field splitting (ZFS) parameters and Euler angles relating the radical-to-cobalt interspin vector to the g axis system of the low-spin Co(2+).
View Article and Find Full Text PDFMethylmalonyl-CoA mutase (MMCM) is an enzyme that utilizes the adenosylcobalamin (AdoCbl) cofactor to catalyze the rearrangement of methylmalonyl-CoA to succinyl-CoA. Despite many years of dedicated research, the mechanism by which MMCM and related AdoCbl-dependent enzymes accelerate the rate for homolytic cleavage of the cofactor's Co-C bond by approximately 12 orders of magnitude while avoiding potentially harmful side reactions remains one of the greatest subjects of debate among B(12) researchers. In this study, we have employed electronic absorption (Abs) and magnetic circular dichroism (MCD) spectroscopic techniques to probe cofactor/enzyme active site interactions in the Co(3+)Cbl "ground" state for MMCM reconstituted with both the native cofactor AdoCbl and its derivative methylcobalamin (MeCbl).
View Article and Find Full Text PDFThe contribution of the active-site residue, Y89, to the trillion-fold acceleration of Co-carbon bond homolysis rate in the methylmalonyl-CoA mutase-catalyzed reaction has been evaluated by site-directed mutagenesis. Conversion of Y89 to phenylalanine or alanine results in a 10(3)-fold diminution of k(cat) and suppression of the overall kinetic isotope effect. The spectrum of the enzyme under steady-state conditions reveals the presence of AdoCbl but no cob(II)alamin.
View Article and Find Full Text PDFBiochem Soc Trans
August 2002
Adenosylcobalamin or coenzyme B(12)-dependent enzymes are members of the still relatively small group of radical enzymes and catalyse 1,2-rearrangement reactions. A member of this family is methylmalonyl-CoA mutase, which catalyses the isomerization of methylmalonyl-CoA to succinyl-CoA and, unlike the others, is present in both bacteria and animals. Enzymes that catalyse some of the most chemically challenging reactions are the ones that tend to deploy radical chemistry.
View Article and Find Full Text PDFMethylmalonyl-CoA mutase is an adenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the rearrangement of methylmalonyl-CoA to succinyl-CoA. The crystal structure of this protein revealed that binding of the cofactor is accompanied by a significant conformational change in which dimethylbenzimidazole, the lower axial ligand to the cobalt in solution, is replaced by His-610 donated by the active site. The contribution of the lower axial base to the approximately 10(12)-fold rate acceleration of the homolytic cleavage of the upper axial cobalt-carbon bond has been the subject of intense scrutiny in the model inorganic literature.
View Article and Find Full Text PDF