Publications by authors named "Vladislav V Shunaev"

The combination of spinel LiTiO (LTO) with carbon nanostructures, such as graphene (G) and carbon nanotubes (CNTs), provides all of the required properties for modern chemical power sources such as Li-ion batteries (LIBs) and supercapacitors (SCs). G/LTO and CNT/LTO composites demonstrate a superior reversible capacity, cycling stability, and good rate performances. In this paper, an ab initio attempt to estimate the electronic and capacitive properties of such composites was made for the first time.

View Article and Find Full Text PDF

Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) are widely used for drug delivery. One of the main challenges is to clarify their interaction with hypoxia-inducible factor 1 alpha (HIF-1α), the lack of which leads to oncological and cardiovascular diseases. In the presented study, N-MWCNTs were synthesized by catalytic chemical vapor deposition and irradiated with argon ions.

View Article and Find Full Text PDF

Relying on empirical and quantum chemical methods, a hybrid nanocomposite based on the T-shaped carbon nanotube (CNT) junction and internal fullerene C is proposed as a potential triple-value memory cell. The T-shaped CNT provides three potential wells where the internal fullerene can be located. The fullerene can move between these wells under the periodic external electric field, whose strength and frequency parameters are identified.

View Article and Find Full Text PDF

The outstanding mechanical and conductive properties of graphene and high theoretical capacity of magnetite make a composite based on these two structures a prospective material for application in flexible energy storage devices. In this study using quantum chemical methods, the influence of magnetite concentration on energetic and electronic parameters of graphene/FeO composites is estimated. It is found that the addition of magnetite to pure graphene significantly changes its zone structure and capacitive properties.

View Article and Find Full Text PDF

Graphene and phospholipids are widely used in biosensing and drug delivery. This paper studies the mechanical and electronic properties of a composite based on two graphene flakes and dipalmitoylphosphatidylcholine (DPPC) phospholipid molecules located between them via combination of various mathematical modeling methods. Molecular dynamics simulation showed that an adhesion between bilayer graphene and DPCC increases during nanoindentation of the composite by a carbon nanotube (CNT).

View Article and Find Full Text PDF

The development of electrochemical biosensors is an important challenge in modern biomedicine since they allow detecting femto- and pico-molar concentrations of molecules. During this study, pillared graphene structures supported by vertically aligned carbon nanotubes (VACNT-graphene) are examined as the potential recognition element of DNA biosensors. Using mathematical modeling methods, the atomic supercells of different (VACNT-graphene) configurations and the energy profiles of its growth are found.

View Article and Find Full Text PDF

Quantitative theoretical studies of long-range electron transfer are still rare, and reliable computational methods to analyze these reactions are still being developed. We re-examined electron transfer reactions in ruthenium-modified cytochrome b562 derivatives focusing on accurate calculation of statistical average of electron transfer rates that are dominated by a small fraction of accessible protein conformations. We performed a series of ab initio calculations of donor/acceptor interactions over protein fragments sampled from long molecular dynamic trajectories and compared computed electron transfer rates to available experimental data.

View Article and Find Full Text PDF

The results of the theoretical investigation of the behavior of fullerenes C20 and C60 inside the icosahedral external shell on example of carbon nanoclusters, C20@С240 and C60@С540, are presented in this article. The multiwell potential of interaction between fullerenes in investigated nanoclusters is calculated to reveal the regularities of moving for internal fullerene in the field of holding potential of the external shell. The possible variants of fullerenes C20 and C60 moving between the potential wells are predicted on base of topology data of the fullerenes relative positioning in nanoparticle and analysis of relief of the energy surface of interaction between fullerenes.

View Article and Find Full Text PDF