Phys Rev Lett
November 2019
Attosecond angular streaking (or "attoclock") is an insightful technique for probing the ultrafast electron dynamics in strong laser fields. Up until recently, this technique relied solely on an accurate measurement of the photoelectron momentum distribution and has remained restricted to atomic targets. Here, we propose a novel attosecond angular streaking scheme applicable to molecules, for which the ionic fragments of dissociative ionization are detected in the polarization plane of a close-to-circular polarized laser light.
View Article and Find Full Text PDFWe solve the time-dependent Schrödinger equation describing a water molecule driven by a superposition of the extreme ultraviolet and IR pulses typical for a reconstruction of attosecond beating by interference of two-photon transitions experiment. This solution is obtained by a combination of the time-dependent coordinate scaling and the density functional theory with self-interaction correction. Results of this solution are used to determine the time delay in photoionization of the water and hydrogen molecules.
View Article and Find Full Text PDF