Carbon materials are promising for use as electrodes for supercapacitors and lithium-ion batteries due to a number of properties, such as non-toxicity, high specific surface area, good electronic conductivity, chemical inertness, and a wide operating temperature range. Carbon-based electrodes, with their characteristic high specific power and good cyclic stability, can be used for a new generation of consumer electronics, biomedical devices and hybrid electric vehicles. However, most carbon materials, due to their low electrical conductivity and insufficient diffusion of electrolyte ions in complex micropores, have energy density limitations in these devices due to insufficient number of pores for electrolyte diffusion.
View Article and Find Full Text PDFThe increase in the share of physical and technical processing methods in the arsenal of deburring technologies used in modern production is associated both with the use of difficult-to-machine materials, such as beryllium bronze and the 29 NK alloy, and with the need to solve technological problems for the production of small-sized products with hard-to-reach surfaces. The aim of the study is to improve the processes of blade processing of small-sized parts made of beryllium bronze and the 29 NK alloy to provide rational conditions for thermal pulse deburring. Surface samples were experimentally obtained after turning in different modes on a CITIZEN CINCOM K16E-VII automatic lathe equipped with an Applitec micromechanics tool.
View Article and Find Full Text PDFThe spent liquid glass mixture, which is widely used in foundries as a binder after knocking out of moldings, contains pieces of different sizes and strengths, and there is a strong silicate film on the sand grains themselves. The proposed regeneration plants, which provide for the removal of the silicate film by scrubbing, have low productivity and lead to abrasion of the grains themselves. For this reason, the knocked-out mixture is taken to the dump.
View Article and Find Full Text PDFSensors (Basel)
June 2021
In industries that implement the technology of induction soldering, various sensors, including non-contact pyrometric ones, are widely used to control the technological process. The use of this type of sensor implies the need to choose a solution that is effective in different operating conditions in terms of the accuracy of the data obtained and the reliability of the measurement equipment and duplication in case of a failure. The present article discusses the development of intelligent technology based on a collection of artificial neural networks, which allows a number of problems associated with technological process control when using pyrometric sensors to be solved: assessing the quality of measurements, correcting measurements when non-standard errors are detected, and controlling the process of induction heating in the absence of reliable readings of the measurement instruments.
View Article and Find Full Text PDF