Publications by authors named "Vladislav Sadykov"

Oxygen and hydrogen mobility are among the important characteristics for the operation of solid oxide fuel cells, permselective membranes and many other electrochemical devices. This, along with other characteristics, enables a high-power density in solid oxide fuel cells due to reducing the electrolyte resistance and enabling the electrode processes to not be limited by the electrode-electrolyte-gas phase triple-phase boundary, as well as providing high oxygen or hydrogen permeation fluxes for membranes due to a high ambipolar conductivity. This work focuses on the oxygen and hydrogen diffusion of mixed ionic (oxide ionic or/and protonic)-electronic conducting materials for these devices, and its role in their performance.

View Article and Find Full Text PDF

Synthesis and study of materials based on bismuth cerates and titanates were carried out. Complex oxides BiYTiO were synthesized by the citrate route; BiCeO and BiYCeO-by the Pechini method. The structural characteristics of materials after conventional sintering at 500-1300 °C were studied.

View Article and Find Full Text PDF

The mesoporous MgAlO support is promising for the design of efficient and stable to coking catalysts for natural gas and biofuel reforming into syngas. This work aims at doping this support with transition metal cations (Fe, Cr, Ti) to prevent the incorporation of Ni and rare-earth cations (Pr, Ce, Zr), loaded by impregnation, into its lattice along with providing additional sites for CO activation required to prevent coking. Doped MgAlMeO (Me = Fe, Ti, Cr) mesoporous supports prepared by the one-pot evaporation-induced self-assembly method with Pluronic P123 triblock copolymers were single-phase spinels.

View Article and Find Full Text PDF

A series of 5%Ni/CeTiO catalysts was prepared with nickel impregnation of mixed Ce-Ti oxides obtained via synthesis in supercritical isopropanol. All oxides have a cubic fluorite phase structure. Ti is incorporated into the fluorite structure.

View Article and Find Full Text PDF

Two series of Ni/Ce(Ti/Nb)ZrO catalysts were prepared using citrate route and original solvothermal continuous flow synthesis in supercritical isopropanol and studied in dry reforming of methane (DRM). TEM, XPS and FTIRS of adsorbed CO confirm influence of support composition and preparation method on the catalysts' morphology and surface features. The oxygen mobility was studied by isotope heteroexchange with CO.

View Article and Find Full Text PDF

Lanthanide tungstates and molybdates are promising materials for hydrogen separation membranes due to their high protonic conductivity. A promising approach to fabricating ceramics based on these materials is radiation thermal sintering. The current work aims at studying the effect of radiation thermal sintering on the structural morphological and transport properties of (Nd,Ln)(W,Mo)O as promising materials for hydrogen separation membranes.

View Article and Find Full Text PDF

Membrane reactors (MR) with an appropriate catalyst are considered to be an innovative and intensified technology for converting a fuel into the hydrogen-rich gas with the simultaneous recovery of high-quality hydrogen. Characteristics of an asymmetric membrane disk module consisting of a gas-tight nanocomposite functional coating (Ni + Cu/NdWO mixed proton-electron conducting nanocomposite) deposited on a gas-permeable functionally graded substrate has previously been extensively studied at lab-scale using MRs, containing the catalyst in a packed bed and in the form of a monolith. The catalytic monolith consisted of a FeCrAl substrate with a washcoat and an Ni + Ru/PrCeZrO active component.

View Article and Find Full Text PDF

Nd tungstates and molybdates are promising materials for hydrogen separation membranes due to their high protonic conductivity. This work aims at elucidating the structural, textural and oxygen transport features of NdWO, NdWMoO and (NdLa)WO and their composites with NiCuO synthesized by mechanical activation. The oxide materials obtained were distorted double fluorites but their composites with NiCuO possess a complex phase composition.

View Article and Find Full Text PDF

In the present work, complex powder alloys containing spinel as a minor phase were produced by mechanical alloying in a high-energy planetary ball mill from a 33Al-45Cu-22Fe (at.%) powder blend. These alloys show characteristics suitable for the synthesis of promising catalysts.

View Article and Find Full Text PDF

The present study deals with the combination of ethanol steam reforming over a monolithic catalyst and hydrogen separation by membrane in a lab-scale catalytic membrane reactor (CMR). The catalyst was comprised of honeycomb thin-walled Fechralloy substrate loaded with Ni + Ru/PrCeZrO active component. The asymmetric supported membrane consisted of a thin Ni-Cu alloy-Nd tungstate nanocomposite dense permselective layer deposited on a hierarchically structured asymmetric support.

View Article and Find Full Text PDF

The performance of catalytic membrane reactors (CMRs) depends on the specific details of interactions at different levels between catalytic and separation parts. A clear understanding of decisive factors affecting their operational parameters can be provided via mathematical simulations. In the present paper, main results of numerical studies of ethanol steam reforming, followed by downstream hydrogen permeation through an asymmetric supported membrane, are reported.

View Article and Find Full Text PDF

Enhanced activity in low-temperature water-gas shift (LT-WGS) reaction of some ceramometal catalysts compared to conventional Cu-Zn-Al oxide catalyst was demonstrated. Porous ceramometals were synthesized from powdered CuAl alloys prepared by mechanical alloying with the addition of either CuAl powders produced by current spark explosion of Cu+Al wires or CuZnAl oxide obtained by coprecipitation. Their structural, microstructural, and textural characteristics were examined by means of X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectrometry, NMR, and adsorption methods, and catalytic properties were studied in the LT-WGS reaction.

View Article and Find Full Text PDF

Nickel-containing mixed ceria-zirconia oxides also doped by Nb and Ti have been prepared by a citrate route and by original solvothermal continuous flow synthesis in supercritical alcohols. Nickel was subsequently deposited by conventional insipient wetness impregnation. The oxides are comprised of ceria-zirconia solid solution with cubic fluorite phase.

View Article and Find Full Text PDF

Electrical conduction and oxygen diffusion mobility in the bixbyite ( Ia3̅) and rhombohedral ( R3̅) polymorphs of the LnMoO (Ln = Er, Tm, Yb; Δ = δ, δ1, δ2; δ1 > δ2) heavy lanthanide molybdates, belonging to new, previously unexplored classes of potential mixed (ionic-electronic) conductors, have been studied in the range of 200-900 °C. The oxygen self-diffusion coefficient in bixbyite ( Ia3̅) YbMoO phase estimated by the temperature-programmed heteroexchange with CO was shown to be much higher than that for rhombohedral ( R3̅) RI (with large oxygen deficiency) and ( R3̅) RII (with small oxygen deficiency) LnMoO (Ln = Tm, Yb; Δ = δ1; δ1 > δ2) oxides. According to the activation energy for total conduction in ambient air, 0.

View Article and Find Full Text PDF

The kinetics of 18O/16O isotopic exchange over CeO2-ZrO2-La2O3 and Pt/CeO2-ZrO2 catalysts have been investigated under the conditions of dynamic adsorption-desorption equilibrium at atmospheric pressure and a temperature range of 650-850 degrees C. The rates of oxygen adsorption-desorption on Pt sites, support surface, oxygen transfer (spillover) from Pt to the support as well as the amount of oxygen accumulated in the oxide bulk, and oxygen diffusion coefficient were estimated. The nanocrystalline structure of lanthana-doped ceria-zirconia prepared via the Pechini route with a developed network of domain boundaries and specific defects guarantees a high oxygen mobility in the oxide bulk (D = (1.

View Article and Find Full Text PDF

Nanostructured ceria doped with other rare earth elements is a good oxygen ion conductor, which gives rise to various catalytic applications such as the construction of membranes for syngas production by partial oxidation of methane. This article focuses on the Gd-doped cerium dioxides, which can be modified with Pt or Pd to enhance the reactivity of the lattice oxygen in interaction with methane. The aim of the work is the elucidation of correlations between the structural, electronic, and chemical properties of these nanomaterials.

View Article and Find Full Text PDF

The article discusses the properties of several model zirconium dioxide complexes (ZrO(2))(n)() intercalated into the interlayer space of montmorillonite clay. Grand canonical Monte Carlo simulation was used in a series of numerical experiments during analysis of the low-temperature nitrogen adsorption in the micropores thus generated. The goal of such experiments was to determine the geometrical parameters of introduced molecular complexes of different types inside micropores of various widths.

View Article and Find Full Text PDF

Nanostructured doped ceria is a prospective material for catalytic applications such as the construction of membranes with mixed electronic and ionic conductivity for effective syngas production. In this article, the surface properties of nanostructured ceria doped with praseodymium have been studied by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy of adsorbed carbon monoxide. The effects of supporting 1.

View Article and Find Full Text PDF