Publications by authors named "Vladislav Motov"

The production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer-lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs directly from their native lipid environment. However, the original SMA polymer is sensitive to acidic pH levels, which has led to the development of several modifications: SMA-EA, SMA-QA, and others.

View Article and Find Full Text PDF
Article Synopsis
  • Solvatochromic compounds are useful probes for biological research, specifically for tracking changes in protein structures.
  • The study utilized thiol-reactive solvatochromic analogs of the GFP chromophore to monitor two proteins: recoverin and the A adenosine receptor (AAR), finding that the best dye (DyeC) showed significant fluorescence changes related to protein activation.
  • The research highlights the potential of GFP-inspired dyes to effectively detect structural changes in G protein-coupled receptors (GPCRs), providing benefits like enhanced sensitivity to conformational changes and the ability to track fluorescence changes in response to different ligands.
View Article and Find Full Text PDF
Article Synopsis
  • Scorpion α-toxins (α-NaTx) are small proteins that inhibit the inactivation of voltage-gated sodium channels and have a specific structure for binding sodium.
  • The study focuses on the structure of the Lqq4 toxin, revealing it exists in multiple stable forms due to different configurations of peptide bonds, specifically V56-P57 and C17-G18.
  • These findings suggest that the natural range of shapes (conformational space) for α-NaTx proteins is broader than previously thought.
View Article and Find Full Text PDF

Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol-water mixtures.

View Article and Find Full Text PDF