The study aims to determine how chitosan impacts pectin hydrogel's ability to attach peritoneal leukocytes, activate complement, induce hemolysis, and adsorb blood proteins. The hydrogels PEC-Chi0, PEC-Chi25, PEC-Chi50, and PEC-Chi75 were prepared by placing a mixture solution of 4% pectin and 4% chitosan in a ratio of 4:0, 3:1, 2:2, and 1:3 in a solution of 1.0 M CaCl.
View Article and Find Full Text PDFComposite hydrogel microparticles based on pectins with different structures (callus culture pectin (SVC) and apple pectin (AU)) and gelatin were developed. Hydrogel microparticles were formed by the ionotropic gelation and electrostatic interaction of COO groups of pectin and NH groups of gelatin, which was confirmed by FTIR spectroscopy. The addition of gelatin to pectin-based gel formulations resulted in a decrease in gel strength, whereas increasing gelatin concentration enhanced this effect.
View Article and Find Full Text PDFThe interactions of a microbial cell with host cells and humoral factors play an important role in the development of infectious diseases. The study of these mechanisms contributes to the development of effective methods for the treatment of bacterial infections. One of the possible approaches to studying bacterial adhesion to host cells is based on the use of the optical trap method.
View Article and Find Full Text PDFThe aim of this research was to produce composite gel microparticles based on the pectin (campion callus culture (SVC) and commercial apple (AU) pectins) and κ-carrageenan and investigate the relationship between the characteristics and swelling properties of the composite microparticles. The microparticles were obtained using emulsion dehydration techniques with successive incubation in calcium chloride solution. A significant positive correlation between the Ca content and the SVC concentration in gel formulations was shown.
View Article and Find Full Text PDFComposite gel microparticles based on alginate and callus culture pectins with low and high degrees of methylesterification or apple pectin were produced. By varying the chemical composition of the pectic samples and the ratio of alginate to pectin, the gel strength, morphology, and swelling properties of composite microparticles can be altered. The inclusion of increasing concentrations of alginate in gel formulations promoted an increase in the microparticle gel strength and the formation of a smoother surface microrelief independently of the pectin chemical composition.
View Article and Find Full Text PDFUnderstanding of interactions between a bacterium and an immune or non-immune host organism at the cellular and subcellular level is important in order to improve new and existing immunobiological tools for the treatment of bacterial infections (including pseudotuberculosis). The aim of this work was to quantify the interaction force between Yersinia pseudotuberculosis and monoclonal antibodies (mAbs) in the model system "lipopolysaccharide (LPS) - mAbs" by atomic force microscopy (AFM). Our research findings provided the methodical approaches to force measurements between an AFM probe, which was functionalized with Y.
View Article and Find Full Text PDFThe aim of this work was to evaluate the relationship between the cross-linking cation content in the microparticles, chemical characteristics of pectins and swelling properties of the gel microparticles based on the Zn, Fe and Al cross-linking cations. A significant negative correlation between the Zn content and DM of pectin indicated that decreasing DM of pectin promoted Zn binding. The microparticles from the pectins with a higher linearity had a higher content of Fe.
View Article and Find Full Text PDFThe aim of this work is to produce calcium pectin-silica gel beads containing mesalazine as a drug model in order to control the drug release in the colon. The mesalazine loaded calcium pectin-silica gel beads were prepared using the ionotropic gelation method. Energy-dispersive X-ray analysis revealed that increasing the NaSiO concentration led to an increase of the silicon content on the surface and in the cross-sections of the beads.
View Article and Find Full Text PDFThe aim of this research is to investigate the influence of the surface morphology of the calcium pectinate gel (CaPG) beads as well as the physicochemical characteristics of pectins and the CaPG beads on the adhesive properties of gels against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Bacillus subtilis. The adhesion of the bacteria depends on the type of pectin and the surface morphology of the beads. The faster adhesion on CaPG beads appeared to be related to a lower degree of methyl esterification (DE), a higher molecular weight (Mw) and specific viscosity of the pectin and a higher gel strength.
View Article and Find Full Text PDF