Publications by authors named "Vladislav A Sadykov"

The mesoporous MgAlO support is promising for the design of efficient and stable to coking catalysts for natural gas and biofuel reforming into syngas. This work aims at doping this support with transition metal cations (Fe, Cr, Ti) to prevent the incorporation of Ni and rare-earth cations (Pr, Ce, Zr), loaded by impregnation, into its lattice along with providing additional sites for CO activation required to prevent coking. Doped MgAlMeO (Me = Fe, Ti, Cr) mesoporous supports prepared by the one-pot evaporation-induced self-assembly method with Pluronic P123 triblock copolymers were single-phase spinels.

View Article and Find Full Text PDF

Nd tungstates and molybdates are promising materials for hydrogen separation membranes due to their high protonic conductivity. This work aims at elucidating the structural, textural and oxygen transport features of NdWO, NdWMoO and (NdLa)WO and their composites with NiCuO synthesized by mechanical activation. The oxide materials obtained were distorted double fluorites but their composites with NiCuO possess a complex phase composition.

View Article and Find Full Text PDF

Enhanced activity in low-temperature water-gas shift (LT-WGS) reaction of some ceramometal catalysts compared to conventional Cu-Zn-Al oxide catalyst was demonstrated. Porous ceramometals were synthesized from powdered CuAl alloys prepared by mechanical alloying with the addition of either CuAl powders produced by current spark explosion of Cu+Al wires or CuZnAl oxide obtained by coprecipitation. Their structural, microstructural, and textural characteristics were examined by means of X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectrometry, NMR, and adsorption methods, and catalytic properties were studied in the LT-WGS reaction.

View Article and Find Full Text PDF

Electrical conduction and oxygen diffusion mobility in the bixbyite ( Ia3̅) and rhombohedral ( R3̅) polymorphs of the LnMoO (Ln = Er, Tm, Yb; Δ = δ, δ1, δ2; δ1 > δ2) heavy lanthanide molybdates, belonging to new, previously unexplored classes of potential mixed (ionic-electronic) conductors, have been studied in the range of 200-900 °C. The oxygen self-diffusion coefficient in bixbyite ( Ia3̅) YbMoO phase estimated by the temperature-programmed heteroexchange with CO was shown to be much higher than that for rhombohedral ( R3̅) RI (with large oxygen deficiency) and ( R3̅) RII (with small oxygen deficiency) LnMoO (Ln = Tm, Yb; Δ = δ1; δ1 > δ2) oxides. According to the activation energy for total conduction in ambient air, 0.

View Article and Find Full Text PDF

The kinetics of 18O/16O isotopic exchange over CeO2-ZrO2-La2O3 and Pt/CeO2-ZrO2 catalysts have been investigated under the conditions of dynamic adsorption-desorption equilibrium at atmospheric pressure and a temperature range of 650-850 degrees C. The rates of oxygen adsorption-desorption on Pt sites, support surface, oxygen transfer (spillover) from Pt to the support as well as the amount of oxygen accumulated in the oxide bulk, and oxygen diffusion coefficient were estimated. The nanocrystalline structure of lanthana-doped ceria-zirconia prepared via the Pechini route with a developed network of domain boundaries and specific defects guarantees a high oxygen mobility in the oxide bulk (D = (1.

View Article and Find Full Text PDF

Nanostructured ceria doped with other rare earth elements is a good oxygen ion conductor, which gives rise to various catalytic applications such as the construction of membranes for syngas production by partial oxidation of methane. This article focuses on the Gd-doped cerium dioxides, which can be modified with Pt or Pd to enhance the reactivity of the lattice oxygen in interaction with methane. The aim of the work is the elucidation of correlations between the structural, electronic, and chemical properties of these nanomaterials.

View Article and Find Full Text PDF

Nanostructured doped ceria is a prospective material for catalytic applications such as the construction of membranes with mixed electronic and ionic conductivity for effective syngas production. In this article, the surface properties of nanostructured ceria doped with praseodymium have been studied by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy of adsorbed carbon monoxide. The effects of supporting 1.

View Article and Find Full Text PDF