Publications by authors named "Vladimiro Artuso"

Engaging patients as partners in biomedical research has gradually gained consensus over the last two decades. They provide a different perspective on health priorities and help to improve design and outcomes of clinical studies. This paper describes the relationship established between scientists and members of a large family at genetic risk of very rare lethal disease, fatal familial insomnia (FFI).

View Article and Find Full Text PDF

Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking.

View Article and Find Full Text PDF

Mechanisms of tissue damage in Huntington's disease involve excitotoxicity, mitochondrial damage, and inflammation, including microglia activation. Immunomodulatory and anti-protein aggregation properties of tetracyclines were demonstrated in several disease models. In the present study, the neuroprotective and anti-inflammatory effects of the tetracycline doxycycline were investigated in the mouse model of HD disease R6/2.

View Article and Find Full Text PDF

Background: Presenilin-1 (PSEN-1) is a component of the γ-secretase complex involved in β-amyloid Precursor Protein (AβPP) processing. Usually, Alzheimer's disease (AD)-linked mutations in the PSEN-1 gene lead to the early onset and increase the production of the aggregation-prone peptide Aβ42. However, the PSEN-1 E318G variant has an unclear pathogenic role and is recently reported as a genetic risk factor for AD.

View Article and Find Full Text PDF

The term oligomeropathies defines the neurodegenerative disorders associated with protein misfolding, where small soluble aggregates (oligomers 4-200 KDa) are the cause of neuronal dysfunction and are responsible for spreading the pathology. The ability of these soluble β-sheet conformers to induce neuronal damage has been investigated in direct challenge with the monomeric and fibrillary structures, showing that only the oligomeric species affected the neurons. β amyloid oligomers were initially purified from Alzheimer brains and obtained using synthetic peptides.

View Article and Find Full Text PDF

The text describes a preventive clinical trial with drug treatment in a very rare neurodegenerative disease (Fatal familial Insomnia, FFI) designed with the help of individuals at genetic risk of developing the disease, asymptomatic carriers, who have agreed to be exposed over a 10-year period to doxycycline, an antibiotic with anti-prion activity. At least 10 carriers of the FFI mutation over 42 y old will be treated with doxycycline (100 mg/die) and the incidence of the disease will be compared to that of an historical dataset. For ethical reasons a randomized, double-blind, placebo-controlled trial was not feasible, however the study design and the statistical analysis ensure the scientific value of the results.

View Article and Find Full Text PDF

In the last two decades, knowledge of the neurobiology of prion diseases or transmissible spongiform encephalopathies (TSE) has significantly advanced, but a successful therapy to stop or delay the progression of these disorders remains one of the most challenging goals of biomedical research. Several obstacles to this achievement are in common with other neurodegenerative disorders: difficulties to move from experimental level to clinical stage; appropriate timing of intervention; correct set up of clinical trial. Also in terms of molecular bases of disease, TSE and the other neurodegenerative disorders associated with protein misfolding such as Alzheimer, Parkinson and Huntington diseases, share a central pathogenic role of soluble small aggregates, named oligomers, considered the culprit of neuronal dysfunction: accordingly, these disorders could by termed oligomeropathies.

View Article and Find Full Text PDF

Presenilin-1 (PSEN-1) is a component of the gamma-secretase complex involved in beta-amyloid precursor protein (betaAPP) processing. To date about 140 pathogenic mutations in the PSEN-1 gene have been identified and their main biochemical effect is to increase the production of the fibrillogenic peptide Abeta(1-42). An exception is the PSEN-1 [E318G] mutation that does not alter Abeta(1-42) generation and is generally considered a non-pathogenic polymorphism.

View Article and Find Full Text PDF