Publications by authors named "Vladimira Horova"

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2'- MTase has become available; however, its biological characterization within the infected cells remains largely elusive.

View Article and Find Full Text PDF

Picornaviruses infect a wide range of mammals including livestock such as cattle and swine. As with other picornavirus genera such as Aphthovirus, there is emerging evidence of a significant economic impact of livestock infections caused by members of the genera Enterovirus and Kobuvirus. While the human-infecting enteroviruses and kobuviruses have been intensively studied during the past decades in great detail, research on livestock-infecting viruses has been mostly limited to the genomic characterization of the viral strains identified worldwide.

View Article and Find Full Text PDF

RNA-dependent RNA polymerase 3D is a key enzyme for the replication of picornaviruses. The viral genome is translated into a single polyprotein that is subsequently proteolytically processed into matured products. The 3D enzyme arises from a stable 3CD precursor that has high proteolytic activity but no polymerase activity.

View Article and Find Full Text PDF

Enteroviruses, members of the family of picornaviruses, are the most common viral infectious agents in humans causing a broad spectrum of diseases ranging from mild respiratory illnesses to life-threatening infections. To efficiently replicate within the host cell, enteroviruses hijack several host factors, such as ACBD3. ACBD3 facilitates replication of various enterovirus species, however, structural determinants of ACBD3 recruitment to the viral replication sites are poorly understood.

View Article and Find Full Text PDF

Tumour necrosis factor (TNF) related apoptosis inducing ligand (TRAIL), a membrane-bound ligand from the TNF family, has attracted significant attention due to its rather specific and effective ability to induce apoptotic death in various types of cancer cells via binding to and activating its pro-apoptotic death receptors. However, a significant number of primary cancer cells often develop resistance to TRAIL treatment, and the signalling platform behind this phenomenon is not fully understood. Upon blocking endosomal acidification by the vacuolar ATPase (V-ATPase) inhibitors bafilomycin A1 (BafA1) or concanamycin A, we observed a significantly reduced initial sensitivity of several, mainly colorectal, tumour cell lines to TRAIL-induced apoptosis.

View Article and Find Full Text PDF