Publications by authors named "Vladimir Zverev"

Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility χ_{L}, which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter ξ, which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy.

View Article and Find Full Text PDF

FeRh-based alloys have attracted significant attention due to their magnetic phase transition and significant magnetocaloric effects. These properties position them as promising candidates for fundamental research and practical applications, including magnetic cooling and targeted drug delivery. The study of FeRh alloys, particularly those where Rhodium or Iron atoms are substituted with other transition metals, is crucial as certain substitutions preserve the alloy's magnetocaloric properties.

View Article and Find Full Text PDF

The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), Dy(hfac), produces black crystals of {TSeT}[Dy(hfac)] () salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution.

View Article and Find Full Text PDF

In this paper, we study the effect of a bias dc field on the dynamic response of a moderately concentrated ferrofluid to an ac magnetic field of arbitrary amplitude. The ferrofluid is modeled by an ensemble of interacting moving magnetic particles; the reaction of particle magnetic moments to ac and dc magnetic fields occurs according to the Brownian mechanism; and the ac and dc magnetic fields are parallel. Based on a numerical solution of the Fokker-Planck equation for the probability density of the orientation of the magnetic moment of a random magnetic particle, dynamic magnetization and susceptibility are determined and analyzed for various values of the ac field amplitude, the dc field strength, and the intensity of dipole-dipole interactions.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) with various shapes and special (magnetic and thermal) properties are promising for magnetic hyperthermia. The efficiency of this therapy depends mainly on the MNPs' physical characteristics: types, sizes and shapes. This paper presents the hyperthermic temperature values induced by cubic/sphere-shaped MNPs injected within a concentric tissue configuration (malignant and healthy tissues) when an external time-dependent magnetic field was applied.

View Article and Find Full Text PDF

In this paper, the dynamic magnetic properties of an ensemble of interacting immobilized magnetic nanoparticles with aligned easy axes in an applied ac magnetic field directed perpendicular to the easy axes are considered. The system models soft, magnetically sensitive composites synthesized from liquid dispersions of the magnetic nanoparticles in a strong static magnetic field, followed by the carrier liquid's polymerization. After polymerization, the nanoparticles lose translational degrees of freedom; they react to an ac magnetic field via Néel rotation, when the particle's magnetic moment deviates from the easy axis inside the particle body.

View Article and Find Full Text PDF

With the increase in non-communicable diseases, cancer is becoming one of the most lethal ailments of the coming decades. Significant progress has been made in the development of NPs that combine diagnostic and therapeutic properties in a single system. Multimodal NPs that sequentially perform MRI diagnostics with increased contrast and then act as synergistic agents for magnetic hyperthermia and radiotherapy can be considered as next-generation anticancer drugs.

View Article and Find Full Text PDF

Surveillance for acute flaccid paralysis syndrome (AFP) in children under 15 is the backbone of the Global Polio Eradication Initiative. Laboratory examination of stool samples from AFP cases allows the detection of, along with polioviruses, a variety of non-polio enteroviruses (NPEV). The etiological significance of these viruses in the occurrence of AFP cases has been definitively established only for enteroviruses A71 and D68.

View Article and Find Full Text PDF

Based on numerical results of dynamic susceptibility, a simple theory of the dynamic response of a ferrofluid to an ac magnetic field is obtained that includes both the effects of interparticle dipole-dipole interactions and the dependence on field amplitude. Interparticle interactions are incorporated in the theory using the so-called modified mean-field approach. The new theory has the following important characteristics: in the noninteracting regime at a weak ac field, it gives the correct single-particle Debye theory results; it expands the applicability of known theories valid for high concentrations [Ivanov, Zverev, and Kantorovich, Soft Matter 12, 3507 (2016)10.

View Article and Find Full Text PDF

Magnetic oxides are promising materials for alternative health diagnoses and treatments. The aim of this work is to understand the dependence of the heating power with the nanoparticle (NP) mean size, for the manganite composition LaSrMnO (LSMO)-the one with maximum critical temperature for the whole La/Sr ratio of the series. We have prepared four different samples, each one annealed at different temperatures, in order to produce different mean NP sizes, ranging from 26 nm up to 106 nm.

View Article and Find Full Text PDF

In this study, crystals of the hybrid layered structure, combined with Fe(III) Spin-Crossover (SCO) complexes with metal-dithiolate anionic radicals, and the precursors with nitrate and iodine counterions, are obtained and characterized. [Fe(III)(3-OMe-Saltrien)][Ni(dmit)] (), [Fe(III)(3-OMe-Saltrien)]NO·HO (), [Fe(III)(3-OMe-Saltrien)]I () (3-OMe-Saltrien = hexadentate NO Schiff base is the product of the condensation of triethylenetetramine with 3-methoxysalicylaldehyde; Hdmit = 2-thioxo-1,3-dithiole-4,5-dithiol). Bulk SCO transition was not achieved in the range 2.

View Article and Find Full Text PDF

Rotavirus A is a dynamically evolving pathogen causing acute gastroenteritis in children during the first years of life. In the present study, we conducted a phylodynamic analysis based on the complete sequences of 11 segments of rotaviruses with the G4P[8] and G2P[4] genotypes isolated in Russia in 2017. Since rotavirus has a segmented genome, our analysis was performed using the Bayesian approach based on separate samples of nucleotide sequences for each gene of the strains studied.

View Article and Find Full Text PDF

We present herein the synthesis, crystal structure, and electric and magnetic properties of the spin-crossover salt [Mn(5-Cl-sal-N-1,5,8,12)]TCNQ ⋅2 CH CN (I), where 5-Cl-sal-N-1,5,8,12=N,N'-bis(3-(2-oxy-5-chlorobenzylideneamino)propyl)-ethylenediamine, containing distinct conductive and magnetic blocks along with acetonitrile solvent molecules. The Mn complex with a Schiff-base ligand, [Mn(5-Cl-sal-N-1,5,8,12)] , acts as the magnetic unit, and the π-electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ ) is the conducting unit. The title compound (I) exhibits semiconducting behavior with room temperature conductivity σ ≈1×10  ohm  cm and activation energy Δ ≈0.

View Article and Find Full Text PDF

Wireless capsule endoscopy (WCE) is a powerful tool for medical screening and diagnosis, where a small capsule is swallowed and moved by means of natural peristalsis and gravity through the human gastrointestinal (GI) tract. The camera-integrated capsule allows for visualization of the small intestine, a region which was previously inaccessible to classical flexible endoscopy. As a diagnostic tool, it allows to localize the sources of bleedings in the middle part of the gastrointestinal tract and to identify diseases, such as inflammatory bowel disease (Crohn's disease), polyposis syndrome, and tumors.

View Article and Find Full Text PDF

The radical anion salt [Fe{HC(pz)3}2](TCNQ)3 demonstrates conductivity and spin-crossover (SCO) transition associated with Fe(II) complex cation subsystem. It was synthesized and structurally characterized at temperatures 100, 300, 400, and 450 K. The compound demonstrates unusual for 7,7,8,8,-tetracyanoquinodimethane (TCNQ)-based salts quasi-two-dimensional conductivity.

View Article and Find Full Text PDF

Background And Objective: Methods of local or loco-regional anticancer treatment are of the utmost importance because the therapeutic 'power' is applied directly to the disease site. Consequently, general toxicity is minimized. Hyperthermia, that is, a sustained increase of intratumoral temperature up to 45oC, has been investigated as a perspective treatment modality alone and/or in combination with ionizing radiation or chemotherapy.

View Article and Find Full Text PDF

The interweave of competing individual relaxations influenced by the presence of temperature and concentration dependent correlations is an intrinsic feature of superparamagnetic nanoparticle suspensions. This unique combination gives rise to multiple applications of such suspensions in medicine, nanotechnology and microfluidics. Here, using theory and experiment, we investigate dynamic magnetic susceptibility in a broad range of temperatures and frequencies.

View Article and Find Full Text PDF

We investigate, via a modified mean field approach, the dynamic magnetic response of a polydisperse dipolar suspension to a weak, linearly polarised, AC field. We introduce an additional term into the Fokker-Planck equation, which takes into account dipole-dipole interaction in the form of the first order perturbation, and allows for particle polydispersity. The analytical expressions, obtained for the real and imaginary dynamic susceptibilities, predict three measurable effects: the increase of the real part low-frequency plateaux; the enhanced growth of the imaginary part in the low-frequency range; and the shift of the imaginary part maximum.

View Article and Find Full Text PDF