More than 68 billion chickens were produced globally in 2018, emphasising their major contribution to the production of protein for human consumption and the importance of their pathogens. Protozoan Eimeria spp. are the most economically significant parasites of chickens, incurring global costs of more than UK £10.
View Article and Find Full Text PDFspecies parasites can cause the enteric disease coccidiosis, most notably in chickens where the economic and welfare implications are significant. Seven species are recognized to infect chickens, although understanding of their regional occurrence, abundance, and population structure remains limited. Reports of circulating in chickens across much of the southern hemisphere with cryptic genotypes and the capacity to escape current anticoccidial vaccines have revealed unexpected levels of complexity.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
July 2016
The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp.
View Article and Find Full Text PDFEimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens.
View Article and Find Full Text PDFProtozoan parasites of the Eimeria genus have undergone extensive speciation and are now represented by a myriad of species that are specialised to different hosts. These species are highly host-specific and usually parasitise single host species, with only few reported exceptions. Doubts regarding the strict host specificity were frequent in the original literature describing coccidia parasitising domestic turkeys.
View Article and Find Full Text PDFCoccidiosis is a disease caused by apicomplexan parasites of the genus Eimeria, which has a significant economic impact on poultry production. Multiple species infecting the turkey have been described; however, due to the general lack of unambiguous description, their identification and taxonomy is debatable. In this work, a systematic approach was taken to isolate, characterise and compare coccidian species in the turkey.
View Article and Find Full Text PDFBackground: Eimeria parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease.
View Article and Find Full Text PDFAlthough oocyst morphology was always considered as a reliable parameter for coccidian species discrimination we describe strain variation of turkey coccidia, Eimeria adenoeides, which remarkably exceeds the variation observed in any other Eimeria species. Two strains have been isolated - the first strain maintains the typical oocyst morphology attributed to this species - large and ellipsoidal - while the second strain has small and ovoid oocysts, never described before for this species. Other biological parameters including pathogenicity were found to be similar.
View Article and Find Full Text PDFAlthough the validity of the coccidian species, Eimeria mivati, has been questioned by many researchers for a long time there has not been any molecular analysis that would help resolve this issue. Here we report on the discovery of the two types of small ribosomal subunit (18S) gene within the Eimeria mitis genome that correspond to the known 18S sequences of E. mitis and E.
View Article and Find Full Text PDF