Using the strong reduction potential of the liquid NaK-78 alloy, we present a new versatile template-free approach to the synthesis of porous metal- and metalloid-based nanomaterials. With this novel approach, NaK can be simultaneously used as an agent for reduction, structure directing, and pore formation without the use of additional reagents.
View Article and Find Full Text PDFPhase change materials that can absorb or release large amounts of heat during phase transition, play a critical role in many important processes, including heat dissipation, thermal energy storage, and solar energy utilization. In general, phase change materials are usually encapsulated in passive modules to provide assurance for energy management. The shape and mechanical changes of these materials are greatly ignored.
View Article and Find Full Text PDFIntroduction: Thyroid function depends on iodine uptake by the body as well as on exposure to various harmful environmental hazards (stress, ionizing radiation).
Aim: The aim of the work was to assess the effect of exposure to low and intermediate doses of external γ-radiation on the thyroid structure and function in young female rats at remote periods after radiation.
Materials And Methods: Forty female rats were used to study remote effects of external γ-radiation exposure during 20 d (at daily doses of 0.
Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design.
View Article and Find Full Text PDFNanoparticles (NPs) have been employed as drug delivery systems (DDSs) for several decades, primarily as passive carriers, with limited selectivity. However, recent publications have shed light on the emerging phenomenon of NPs exhibiting selective cytotoxicity against cancer cell lines, attributable to distinct metabolic disparities between healthy and pathological cells. This study revisits the concept of NPs selective cytotoxicity, and for the first time proposes a high-throughput in silico screening approach to massive targeted discovery of selectively cytotoxic inorganic NPs.
View Article and Find Full Text PDFBy overcoming all conventional limitations associated with the synthesis of metalloid micro- and nanoparticles in aqueous media, we present a new one-step approach to the synthesis of highly crystalline metalloid hollow architectures. The liquid metal-mediated synthesis of Ge- and Sb-based hollow structures with satisfactory reaction kinetics at room temperature and normal pressure is presented.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Thrombosis-related diseases are the primary cause of death in the world. Despite recent advances in thrombosis treatment methods, their invasive nature remains a crucial factor, which leads to considerable deadly consequences. Soft magnetic robots are attracting widespread interest due to their fast response, remote actuation, and shape reprogrammability and can potentially avoid the side effects of conventional approaches.
View Article and Find Full Text PDFThe development of universal methods to synthesize materials with different structures is always in the researchers' focus. Despite the fact that various structures based on magnetite have already been obtained, synthetic approaches that allow to synthesize materials with a wide range of texture and functional properties are still very poorly presented. In this work, we demonstrate that a stable magnetite hydrosol can be easily converted into monolithic structures of xero-, cryo- and aerogel by careful varying concentrations and drying conditions.
View Article and Find Full Text PDFAnimal testing is often criticized due to ethical issues and complicated translation of the results obtained to the clinical stage of drug development. Existing alternative models for nanopharmaceutical testing still have many limitations and do not significantly decrease the number of animals used. We propose a simple, bioinspired model for nanopharmaceutical drug testing based on the decellularized spinach leaf's vasculature.
View Article and Find Full Text PDFActive controlling of optical properties of metallic particles holds great promise for nonlinear nanophotonics and compact optoelectronic devices. Except for the electronic and chemical tuning of their properties, active control through fast and reversible shape modulation remains a significant challenge. Here, we report on the concept for changing the color and brightness of single particles by reversible/irreversible tuning of their shapes.
View Article and Find Full Text PDFThrombosis-related diseases are undoubtedly the deadliest disorders. During the last decades, numerous attempts were made to reduce the overall death rate and severe complications caused by treatment delays. Significant progress has been made in the development of nanostructured thrombolytics, especially magnetically controlled.
View Article and Find Full Text PDFThe unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered.
View Article and Find Full Text PDFAtherosclerosis, being an inflammation-associated disease, represents a considerable healthcare problem. Its origin remains poorly understood, and at the same time, it is associated with extensive morbidity and mortality worldwide due to myocardial infarctions and strokes. Unfortunately, drugs are unable to effectively prevent plaque formation.
View Article and Find Full Text PDFNumerous biomedical applications imply supportive materials to improve protective, antibacterial, and regenerative abilities upon surgical interventions, oncotherapy, regenerative medicine, and others. With the increasing variability of the possible sources, the materials of natural origin are among the safest and most accessible biomedical tools. Animal, plant, and fungal tissues can further undergo decellularization to improve their biocompatibility.
View Article and Find Full Text PDFFor decades, scientists have been looking for a way to control catalytic and biocatalytic processes through external physical stimuli. In this Letter, for the first time, we demonstrate the 150 ± 8% increase of the conversion of glucose to ethanol by due to the application of a low-frequency magnetic field (100 Hz). This effect was achieved by the specially developed magnetic urchin-like particles, consisting of micrometer-sized core coated nanoneedles with high density, which could provide a biosafe permeabilization of cell membranes in a selected frequency and concentration range.
View Article and Find Full Text PDFAn investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nucleic acid-magnetic nanoparticle» type constructs are being developed to carry out the highly efficient detection of pathogens, create express systems for genotyping and sequencing, and detect siRNA. However, the data available on the impact of nanoparticles on the behavior of siRNA are insufficient.
View Article and Find Full Text PDFFor the widespread application of nanotechnology in biomedicine, it is necessary to obtain information about their safety. A critical problem is presented by the host immune responses to nanomaterials. It is assumed that the innate immune system plays a crucial role in the interaction of nanomaterials with the host organism.
View Article and Find Full Text PDFRapid detection of bacterial contamination is an essential task in numerous medical and technical processes and one of the most rapidly developing areas of nano-based analytics. Here, we present a simple-to-use and special-equipment-free test-system for bacteria detection based on magnetite nanoparticle arrays. The system is based on peroxide oxidation of chromogenic substrate catalyzed by magnetite nanoparticles, and the process undergoes computer-aided visual analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2019
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.
View Article and Find Full Text PDFNanostructured drugs are being approved for clinical use, although there is a serious deficit of systematic studies of these materials. Data on toxicity of nanoparticles (NPs) can vary due to different methods of preparation, size, and shape. We investigated the toxicity against cultured human cells, the acute toxicity in mice, and the influence on conjugative transfer of antibiotic resistance genes of clinically relevant NPs such as TiO, ZrO, HfO, TaO, FeO, and AlOOH.
View Article and Find Full Text PDFEnzymes are macromolecular biocatalysts, widely used in food industry. In applications, enzymes are often immobilized on inert and insoluble carriers, which increase their efficiency due to multiple reusability. The properties of immobilized enzymes depend on the immobilization method and the carrier type.
View Article and Find Full Text PDFHere, for the first time, we investigated the effects of matrixes with different nature on the stimuli-responsive mechanoluminescence (ML) of incorporated nanoparticles. It turned out that the contraction forces initiated by polymerization process can have compressive effects that differ by orders. This effect was achieved owing to the introduction of ML crystals in an alumina sol-gel system, which has large surface of coagulation contact.
View Article and Find Full Text PDFA major obstacle in developing upconversion aerogels is the incompatibility of the highly-developed porosity and the crystal structure required for converting light to a shorter wavelength. We propose a novel method for creating a sol-gel procedure for synthesizing metal (Zr, Hf, and Ta) oxide upconverison aerogels uniformly doped with Er3+ and Yb3+ by precisely adjusting the calcination conditions.
View Article and Find Full Text PDFIn this study, we present a new concept for the simple visual detection of nano-scale objects in solutions. To achieve this goal, we developed chromogen-free interference-based sensors that provided a color visible reaction directly after the interaction of the analyte with the substrate. The effect is based on the strong optical interference occurring at the interface between the inkjet printed sol-gel titania film (a layer with high refractive index) and the adsorbed nano-sized objects (layer with low refractive index), which can be detected even with the naked eye.
View Article and Find Full Text PDF