Cancer Biother Radiopharm
December 2006
Conditionally replicative adenoviruses (CRAds) are engineered to replicate only in the target tissue and destroy tumor through their cytopathic effect. Because of restricted in vivo replication, it is difficult to model behavior of human Ad5-based vectors in animal subjects. To circumvent this, we developed a "syngeneic" canine CRAd based on canine adenovirus type 2 (CAV2) transcriptionally targeted to canine osteosarcoma (OS) cells.
View Article and Find Full Text PDFThe clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells.
View Article and Find Full Text PDFCanine adenovirus type 2 (CAV2) has become an attractive vector for gene therapy because of its non-pathogenicity and the lack of pre-existing neutralizing antibodies against this virus in the human population. Additionally, this vector has been proposed as a conditionally replicative adenovirus agent under the control of an osteocalcin promoter for evaluation in a syngeneic, immunocompetent canine model with spontaneous osteosarcoma. In this study, a CAV2 vector labelled with the fluorescent capsid fusion protein IX-enhanced green fluorescent protein (pIX-EGFP) was developed.
View Article and Find Full Text PDFDevelopment of immunocompetent patient-like models that allow direct analysis of human adenovirus-based conditionally replicative adenoviruses (CRAds) would be beneficial for the advancement of these oncolytic agents. To this end, we explored the possibility of cross-species replication of human adenovirus type 5 (Ad5) in canine cells. With a panel of canine tumor cell lines of both epithelial and mesenchymal derivations, we demonstrate that human Ad5 can productively infect canine cells.
View Article and Find Full Text PDF