Binuclear transition-metal complexes based on conjugated systems containing coordinating functions are potentially suitable for a wide range of applications, including light-emitting materials, sensors, light-harvesting systems, photocatalysts, etc., due to energy-transfer processes between chromophore centers. Herein we report on the synthesis, characterization, photophysical, and theoretical studies of relatively rare rhenium(I) and rhenium(I)-iridium(III) dyads prepared by using the nonsymmetrical polytopic ligands ( and ) with the strongly conjugated phenanthroline and imidazole-quinoline/pyridine coordinating fragments.
View Article and Find Full Text PDFA family of diimine (N^N) and cyclometalating (N^C) ligands based on a phenanthro-imidazole aromatic system: 2-pyridyl-1H-phenanthro[9,10-d]imidazole (N^N); 2-R-1-phenyl-1H-phenanthro[9,10-d]imidazole, R = phenyl (N^C4), 3-iodophenyl (N^C5) and 4-nitrophenyl (N^C6) were prepared. It was found that N^C4 and N^C5 show π-π* fluorescence typical of aromatic systems of this sort, whereas the donor-acceptor architecture of N^C6 leads to strong emission solvatochromism and acidochromism, indicating the charge transfer character of the fluorescence observed. Six iridium(iii) complexes (1-6) [Ir(N^C#)2(N^N)]+, where # = 1-6 and N^C1 = 2-phenylpyridine, N^C2 = 2-(benzo[b]thiophen-2-yl)pyridine, and N^C3 = methyl 2-phenylquinoline-4-carboxylate, were also synthesized and characterized.
View Article and Find Full Text PDFTwo NIR-emitting platinum [Pt(N^N^C)(phosphine)] and iridium [Ir(N^C)2(N^N)] complexes containing reactive succinimide groups were synthesized and characterized with spectroscopic methods (, 1-phenyl-3-(pyridin-2-yl)benzo[4,5]imidazo[1,2-]pyrazine, , 6-(2-benzothienyl)phenanthridine, phosphine-3-(diphenylphosphaneyl)propanoic acid -hydroxysuccinimide ether, and , 4-oxo-4-((1-(pyridin-2-yl)-1-1,2,3-triazol-4-yl)methoxy)butanoic acid -hydroxysuccinimide ether). Their photophysics were carefully studied and analyzed using time-dependent density functional theory calculations. These complexes were used to prepare luminescent micro- and nanoparticles with the "core-shell" morphology, where the core consisted of biodegradable polymers of different hydrophobicity, namely, poly(d,l-lactic acid), poly(ε-caprolactone), and poly(ω-pentadecalactone), whereas the shell was formed by covalent conjugation with poly(l-lysine) covalently labeled with the platinum and iridium emitters.
View Article and Find Full Text PDF