Publications by authors named "Vladimir V Naumov"

The subject matter of the reported work refers to studying the interactions followed by the excited-state generation, which are chemical models of oxidative processes leading to a weak light emission emerging from living cells, and to explore the possibilities of using them as tools for evaluating the activity of oxygen-metabolism modulators, most prominently, natural bioantioxidants of biomedical value in particular. Methodologically, major attention is paid to analyzing the shapes of the time profiles of the light emission derived from a model sensory system in the presence of lipid samples of vegetable and animal (fish) origin rich in bioantioxidants. As a result, a modified reaction mechanism involving 12 elementary steps is proposed to rationalize the light-emission kinetics in the presence of natural bioantioxidants.

View Article and Find Full Text PDF

Updating the facile chemiluminescence oxygen-aftereffect method, most suitable for determining the rate constant (k ) of the peroxy-radical self-reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate.

View Article and Find Full Text PDF

This study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C 2-symmetric dimers 6-9. Four models were applied: model 1 - chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k A) of the reactions of the antioxidants with peroxyl radicals; model 2 - lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 - oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 - density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure-activity relationship. Dimers showed 2-2.

View Article and Find Full Text PDF