Publications by authors named "Vladimir V Kutyrev"

Article Synopsis
  • Researchers have sequenced the complete genomes of 11 highly virulent strains from the ancient 0.ANT5 branch, closely related to the First Plague Pandemic.
  • Nine of these strains were isolated recently, between 2013 and 2023, while two were obtained from earlier outbreaks in 1953 and 1971.
  • All strains were sourced from the Tien Shan plague focus in Kyrgyzstan, highlighting the ongoing relevance of historical pathogens.
View Article and Find Full Text PDF

The 2.MED1 phylogenetic branch of Yersinia pestis of the medieval biovar became widespread in the Caspian Sea region, the Caucasus, and the Northern Aral Sea region in the 20th century, causing outbreaks and epizootics of plague there. Some of the formed natural foci of 2.

View Article and Find Full Text PDF

We announce the genome sequences of five historical highly virulent Yersinia pestis strains of the phylogroups 2.MED4 and 2.MED1 of the medieval biovar.

View Article and Find Full Text PDF

According to the whole genome SNP analysis of 38 Yersinia pestis strains isolated in the foci of the Northern Caspian and Northern Aral Sea regions in the 20th-early 21st centuries, between 1912 and 2015, the spatial and temporal structure of the 2.MED population of a medieval biovar in this region was determined. A phylogenetic branch 2.

View Article and Find Full Text PDF

In 2018, a previously unknown Ebola virus, Bombali virus, was discovered in Sierra Leone. We describe detection of Bombali virus in Guinea. We found viral RNA in internal organs of 3 Angolan free-tailed bats (Mops condylurus) trapped in the city of N'Zerekore and in a nearby village.

View Article and Find Full Text PDF

The established phylogeny of the etiological agent of plague, , is not perfect, as it does not take into account the strains from numerous natural foci of Commonwealth of Independent States (CIS). We have carried out PCR and SNP typing of 359 strains and whole genome sequencing of 51 strains from these plague foci and determined the phylogenetic diversity of the strains circulating here. They belong to 0.

View Article and Find Full Text PDF

Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.

View Article and Find Full Text PDF

Here, we present the draft whole-genome sequence of O1 El Tor strains 76 and M3265/80, isolated in Mariupol, Ukraine, and Moscow, Russia. The presence of various mutations detected in virulence-associated mobile elements indicates high genetic similarity of the strains reported here with new highly virulent variants of the cholera agent .

View Article and Find Full Text PDF

Draft whole-genome sequencing of the Vibrio cholerae О1 El Tor clinical strain L3226, isolated in Moscow in 2010, was carried out. Various mutations in the virulence-associated mobile elements were determined in its genome that differentiated this strain from the reference V. cholerae О1 El Tor strain N16961.

View Article and Find Full Text PDF

The biofilm-forming phenotype of 14 isolates from four 'nonmain' subspecies of Yersinia pestis was compared with eight isolates from the more commonly studied 'main' or epidemic subspecies of Y. pestis in this study. The four nonmain subspecies are more geographically limited, and are associated with certain mammalian hosts and regions of the Caucasus and Central Asia, whereas the main subspecies spread worldwide during the historic plague pandemics.

View Article and Find Full Text PDF

Molecular-genetic properties of classical biotype Vibrio cholerae strains that caused the Asiatic cholera outbreak in 1942 in Russia have been investigated for the first time. Being characterized by high-level production of cholera toxin and toxin-coregulated adhesion pili both of which are the major virulence factors, all the strains studied, in contrast to the typical cholera pathogens, were autographic requiring purine and/or amino acids added to the minimal medium for their growth. Moreover, these strains containing the structural gene hapA, as shown by the polymerase chain reaction, produced no soluble hemagglutinin/protease, which enables the vibrios to get disseminated in the environment.

View Article and Find Full Text PDF

An effective Vibrio cholerae vaccine is needed to reduce the morbidity and mortality caused by this pathogen. Despite the availability of current oral vaccines with measurable efficacy, there is need for more effective vaccines with broad-spectrum efficacy in target populations. Recent studies have shown that bacterial ghosts, produced by the expression of cloned lysis gene E, possess adjuvant properties and are immunogenic.

View Article and Find Full Text PDF