Publications by authors named "Vladimir V Kozunov"

Background: Difficulties with speech-in-noise perception in autism spectrum disorders (ASD) may be associated with impaired analysis of speech sounds, such as vowels, which represent the fundamental phoneme constituents of human speech. Vowels elicit early (< 100 ms) sustained processing negativity (SPN) in the auditory cortex that reflects the detection of an acoustic pattern based on the presence of formant structure and/or periodic envelope information (f0) and its transformation into an auditory "object".

Methods: We used magnetoencephalography (MEG) and individual brain models to investigate whether SPN is altered in children with ASD and whether this deficit is associated with impairment in their ability to perceive speech in the background of noise.

View Article and Find Full Text PDF

This paper addresses perceptual synthesis by comparing responses evoked by visual stimuli before and after they are recognized, depending on prior exposure. Using magnetoencephalography, we analyzed distributed patterns of neuronal activity - evoked by Mooney figures - before and after they were recognized as meaningful objects. Recognition induced changes were first seen at 100-120 ​ms, for both faces and tools.

View Article and Find Full Text PDF

Although MEG/EEG signals are highly variable between subjects, they allow characterizing systematic changes of cortical activity in both space and time. Traditionally a two-step procedure is used. The first step is a transition from sensor to source space by the means of solving an ill-posed inverse problem for each subject individually.

View Article and Find Full Text PDF

Auditory sensory modulation difficulties and problems with automatic re-orienting to sound are well documented in autism spectrum disorders (ASD). Abnormal preattentive arousal processes may contribute to these deficits. In this study, we investigated components of the cortical auditory evoked potential (CAEP) reflecting preattentive arousal in children with ASD and typically developing (TD) children aged 3-8 years.

View Article and Find Full Text PDF