The generation of terahertz radiation in a photoconductive emitter based on nitrogen-doped single-crystal diamond was realized for the first time. Under 400 nm femtosecond laser pumping, the performance of diamond antennas with different dopant levels was investigated and compared with a reference ZnSe antenna. Terahertz waveforms and corresponding spectra were measured.
View Article and Find Full Text PDFForward stimulated Raman scattering (SRS) induced by focused 400 nm pulses chirped to different pulse durations is observed in water and heavy water. The first Stokes Raman peak shift is shown to be tunable in the range of ${{3500 {-} 4200}}\;{{\rm{cm}}^{- 1}}$ in water and ${{2450 {-} 3250}}\;{{\rm{cm}}^{- 1}}$ in heavy water. It is demonstrated that the Stokes peak shift increases for shorter pulse durations and higher intensities.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2021
Hybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters.
View Article and Find Full Text PDFA new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis.
View Article and Find Full Text PDF