Publications by authors named "Vladimir V Bamm"

Lyme disease, caused by vector-borne Borrelia bacteria, can present with diverse multi-system symptoms that resemble other conditions. The objective of this study was to evaluate disease presentations and Borrelia seroreactivity in individuals experiencing a spectrum of chronic and complex illnesses. We recruited 157 participants from Eastern Canada who reported one or more diagnoses of Lyme disease, neurological, rheumatic, autoimmune, inflammatory, gastrointestinal, or cardiovascular illnesses, or were asymptomatic and presumed healthy.

View Article and Find Full Text PDF

Neuronal loss in Parkinson's disease (PD) is associated with impaired proteostasis and accumulation of α-syn microaggregates in dopaminergic neurons. These microaggregates promote seeding of α-synuclein (α-syn) pathology between synaptically linked neurons. However, the mechanism by which seeding is initiated is not clear.

View Article and Find Full Text PDF

Alpha-synuclein (α-syn) is a small presynaptic protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). It localizes to presynaptic terminals where it partitions between a cytosolic soluble and a lipid-bound state. Recent evidence suggests that α-syn can also associate with mitochondrial membranes where it interacts with a unique anionic phospholipid cardiolipin (CL).

View Article and Find Full Text PDF

Neural stem and progenitor cells (collectively termed neural precursor cells [NPCs]) are found along the ventricular neuraxis extending from the spinal cord to the forebrain in regionally distinct niches comprised of different cell types, architecture, and cell-cell interactions. An understanding of the factors that regulate NPC behavior is critical for developing therapeutics to repair the injured central nervous system. Herein, we demonstrate that myelin basic protein (MBP), the major cytoplasmic protein constituent of the myelin sheath in oligodendrocytes, can regulate NPC behavior.

View Article and Find Full Text PDF

Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Lyme complex.

View Article and Find Full Text PDF

Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface.

View Article and Find Full Text PDF

There is a well-documented relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of the dilated veins in cerebral MS plaques. The source of this iron is unknown, but could be related to the recognized phenomenon of capillary and venous hemorrhages leading to blood extravasation. In turn, hemorrhaging leading to hemolysis results in extracellular release of hemoglobin, a reactive molecule that could induce local oxidative stress, inflammation, and tissue damage.

View Article and Find Full Text PDF

We have proposed that the myelin damage observed in multiple sclerosis (MS) may be partly mediated through the long-term release and degradation of extracellular hemoglobin (Hb) and the products of its oxidative degradation [Cellular and Molecular Life Sciences, 71, 1789-1798, 2014]. The protein haptoglobin (Hpt) binds extracellular Hb as a first line of defense, and can serve as a vascular antioxidant. Humans have two different Hpt alleles: Hpt1 and Hpt2, giving either homozygous Hpt1-1 or Hpt2-2 phenotypes, or a heterozygous Hpt1-2 phenotype.

View Article and Find Full Text PDF

Intrinsically-disordered proteins (IDPs) present a complex interplay of conformational variability and multifunctionality, modulated by environment and post-translational modifications. The 18.5-kDa myelin basic protein (MBP) is essential to the formation of the myelin sheath of the central nervous system and is exemplary in this regard.

View Article and Find Full Text PDF

The classic isoforms of myelin basic protein (MBP, 14-21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.

View Article and Find Full Text PDF

Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies.

View Article and Find Full Text PDF

The 18.5-kDa splice isoform of myelin basic protein (MBP) predominates in the adult brain, adhering the cytoplasmic leaflets of the oligodendrocyte membrane together, but also assembling the cytoskeleton at leading edges of membrane processes. Here, we characterized MBP's role as a microtubule-assembly protein (MAP).

View Article and Find Full Text PDF

The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks.

View Article and Find Full Text PDF

There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis.

View Article and Find Full Text PDF

The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.

View Article and Find Full Text PDF

During myelination in the central nervous system, proteins arising from the gene in the oligodendrocyte lineage (golli) participate in diverse events in signal transduction and gene regulation. One of the interacting partners of the Golli-isoform BG21 was discovered by yeast-2-hybrid means and was denoted the Golli-interacting-protein (GIP). In subsequent in vitro studies of recombinant murine GIP, it was not possible to produce a full-length version of recombinant murine rmGIP in functional form under native conditions, primarily because of solubility issues, necessitating the study of a hexahistidine-tagged, truncated form ΔN-rmGIP.

View Article and Find Full Text PDF

The gene in the oligodendrocyte lineage (golli) encodes a number of proteins essential for myelination, comprising Golli and classic isoforms that are expressed in a developmentally-regulated manner. The Golli-interacting-protein (GIP) was previously discovered in a search for potential interacting partners of the Golli-isoform BG21, and was realised to be an acidic phosphatase belonging to the family of RNA-polymerase-2, small-subunit, C-terminal phosphatases (viz., SCP1).

View Article and Find Full Text PDF

Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress.

View Article and Find Full Text PDF

The 18.5 kDa myelin basic protein (MBP), the most abundant splice isoform in adult mammalian myelin, is a multifunctional, intrinsically disordered protein involved in the development and compaction of the myelin sheath in the central nervous system. A highly conserved central segment comprises a membrane-anchoring amphipathic α-helix followed by a proline-rich segment that represents a ligand for SH3 domain-containing proteins.

View Article and Find Full Text PDF

Protein interactions within regulatory networks should adapt in a spatiotemporal-dependent dynamic environment, in order to process and respond to diverse and versatile cellular signals. However, the principles governing recognition pliability in protein complexes are not well understood. We have investigated a region of the intrinsically disordered protein myelin basic protein (MBP(145-165)) that interacts with calmodulin, but that also promiscuously binds other biomolecules (membranes, modifying enzymes).

View Article and Find Full Text PDF

Group 2 late embryogenesis abundant (LEA) proteins, also known as dehydrins, are intrinsically disordered proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperatures. These proteins are characterized by the presence of at least one conserved, lysine-rich K-segment and sometimes by one or more serine-rich S-segments that are phosphorylated. Dehydrins may stabilize proteins and membrane structures during environmental stress and can sequester and scavenge metal ions.

View Article and Find Full Text PDF

The 18.5-kDa myelin basic protein (MBP), the most abundant isoform in human adult myelin, is a multifunctional, intrinsically disordered protein that maintains compact assembly of the sheath. Solution NMR spectroscopy and a hydrophobic moment analysis of MBP's amino-acid sequence have previously revealed three regions with high propensity to form strongly amphipathic α-helices.

View Article and Find Full Text PDF

Dehydrins are intrinsically unstructured proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Although their role is not completely understood, it has been suggested that they stabilize proteins and membrane structures during environmental stress and also sequester metals such as zinc. Here, we investigate two dehydrins (denoted as TsDHN-1 and TsDHN-2) from Thellungiella salsuginea.

View Article and Find Full Text PDF

Dehydrins are intrinsically disordered (unstructured) proteins that are expressed in plants experiencing stressful conditions such as drought or low temperature. Dehydrins are typically found in the cytosol and nucleus, but also associate with chloroplasts, mitochondria, and the plasma membrane. Although their role is not completely understood, it has been suggested that they stabilize proteins or membrane structures during environmental stress, the latter association mediated by formation of amphipathic α-helices by conserved regions called the K-segments.

View Article and Find Full Text PDF