E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).
View Article and Find Full Text PDFCombined viral and photodynamic therapy for oncological diseases has great potential to treat aggressive tumors such as glioblastomas. A conjugate of vesicular stomatitis virus (VSV) with protoporphyrin IX was prepared, and its oncolytic effects were studied and compared to the effects of the individual components. The VSV showed an oncolytic effect on glioblastoma cell lines T98G and LN229 at a virus titer of 10 TCID/mL.
View Article and Find Full Text PDFDysregulations of epithelial-immune interactions frequently culminate in chronic inflammatory diseases of the skin, lungs, kidneys, and gastrointestinal tract. Yet, the intraepithelial processes that initiate and perpetuate inflammation in these organs are poorly understood. Here, by utilizing redox lipidomics we identified ferroptosis-associated peroxidation of polyunsaturated phosphatidylethanolamines in the epithelia of patients with asthma, cystic fibrosis, psoriasis, and renal failure.
View Article and Find Full Text PDFMitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.
View Article and Find Full Text PDFA stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death.
View Article and Find Full Text PDFAlthough the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic.
View Article and Find Full Text PDFBarth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism.
View Article and Find Full Text PDFFerroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments.
View Article and Find Full Text PDFThis review presents a strategy for obtaining various functional derivatives of tetrapyrrole compounds based on transformations of unsaturated carbon-oxygen and carbon-carbon bonds of the substituents at the position (-formyl, vinyl, and ethynyl porphyrins). First, synthetic approaches to the preparation of these precursors are described. Then diverse pathways for the transformations of the multipotent synthons are discussed, revealing a variety of products of such reactions.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury.
View Article and Find Full Text PDFProgrammed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis.
View Article and Find Full Text PDFIn eutherians, the placenta plays a critical role in the uptake, storage, and metabolism of lipids. These processes govern the availability of fatty acids to the developing fetus, where inadequate supply has been associated with substandard fetal growth. Whereas lipid droplets are essential for the storage of neutral lipids in the placenta and many other tissues, the processes that regulate placental lipid droplet lipolysis remain largely unknown.
View Article and Find Full Text PDFPeripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, and analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs.
View Article and Find Full Text PDFGrowing cancer cells effectively evade most programs of regulated cell death, particularly apoptosis. This necessitates a search for alternative therapeutic modalities to cause cancer cell's demise, among them - ferroptosis. One of the obstacles to using pro-ferroptotic agents to treat cancer is the lack of adequate biomarkers of ferroptosis.
View Article and Find Full Text PDFFerroptosis is a non-apoptotic form of regulated cell death that is triggered by the discoordination of regulatory redox mechanisms culminating in massive peroxidation of polyunsaturated phospholipids. Ferroptosis inducers have shown considerable effectiveness in killing tumour cells in vitro, yet there has been no obvious success in experimental animal models, with the notable exception of immunodeficient mice. This suggests that the effect of ferroptosis on immune cells remains poorly understood.
View Article and Find Full Text PDFStudies on copper(II) tetrafluorenyl porphyrinate (CuTFP) and copper(II) tetraphenyl porphyrinate (CuTPP) have been focused on the charge carrier transport in their solid films and electroluminescence of their composites. In the dye layers deposited by resistive thermal evaporation, the mobilities of holes and electrons are on the order of 10 and 10 cm V s for the charge transport under the influence of traps, and the charge mobility reaches the order of 10 cm V s at space-charge-limited current in the nontrapping mode. For the dye molecules, the correlation between the mobility of charge carriers and the distribution of the electron density on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), which serve as hopping sites for holes and electrons, respectively, is considered.
View Article and Find Full Text PDFIschemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils.
View Article and Find Full Text PDFA method of direct borylation of vinyl-substituted porphyrinoids (porphyrins and chlorins) has been developed based on the copper catalyzed vinylic C-H activation. Ni(II) complexes of - and β-vinylporphyrinoids have been transformed to the corresponding pinacolboronated derivatives with good yields and high ()-stereoselectivity. The method provides an easy and direct access to the valuable synthons which were shown to act as nucleophylic partners in the Suzuki cross-coupling building tetrapyrrole derivatives with π-conjugation through the carbon-carbon double bond.
View Article and Find Full Text PDFTotal body irradiation (TBI) targets sensitive bone marrow hematopoietic cells and gut epithelial cells, causing their death and inducing a state of immunodeficiency combined with intestinal dysbiosis and nonproductive immune responses. We found enhanced Pseudomonas aeruginosa (PAO1) colonization of the gut leading to host cell death and strikingly decreased survival of irradiated mice. The PAO1-driven pathogenic mechanism includes theft-ferroptosis realized via (a) curbing of the host antiferroptotic system, GSH/GPx4, and (b) employing bacterial 15-lipoxygenase to generate proferroptotic signal - 15-hydroperoxy-arachidonoyl-PE (15-HpETE-PE) - in the intestines of irradiated and PAO1-infected mice.
View Article and Find Full Text PDFA series of bifunctional Ru(III) complexes with lonidamine-modified ligands (lonidamine is a selective inhibitor of aerobic glycolysis in cancer cells) was described. Redox properties of Ru(III) complexes were characterized by cyclic voltammetry. An easy reduction suggested a perspective for these agents as their whole mechanism of action seems to be based on activation by metal atom reduction.
View Article and Find Full Text PDFHere, we investigated methods for carbene functionalization of porphyrinoids through metal catalyst-free thermal decomposition of their tosylhydrazones. For the first time, tetrapyrrolyl substituted carbenes were obtained thermolysis of tosylhydrazones of the corresponding tetrapyrrolyl aldehydes and ketones in the presence of a base. The carbenes formed reacted thermally with substrates without a metal catalyst or light irradiation.
View Article and Find Full Text PDF