Publications by authors named "Vladimir Sukhov"

Remote sensing of stressor action on plants is an important step of their protection. Measurement of photochemical reflectance index (PRI) can be used to detect action of stressors including salinization; potentially, a small-scale spatial heterogeneity of PRI (within leaf or its part) can be an indicator of this action. The current work was devoted to analysis of sensitivity of the small-scale heterogeneity in PRI and in the reflected light intensity at 530nm (approximately corresponding to the measuring wavelength for PRI) in leaves of pea (Pisum sativum ) plants to action of salinization.

View Article and Find Full Text PDF

Long-distance electrical signals (ESs) are an important mechanism of induction of systemic adaptive changes in plants under local action of stressors. ES-induced changes in photosynthesis and transpiration play a key role in these responses increasing plant tolerance to action of adverse factors. As a result, investigating ways of regulating electrical signaling and ES-induced physiological responses is a perspective problem of plant electrophysiology.

View Article and Find Full Text PDF

Remote sensing plays an important role in plant cultivation and ecological monitoring. This sensing is often based on measuring spectra of leaf reflectance, which are dependent on morphological, biochemical, and physiological characteristics of plants. However, interpretation of the reflectance spectra requires the development of new tools to analyze relations between plant characteristics and leaf reflectance.

View Article and Find Full Text PDF

CD4 T cells can either enhance or inhibit tumour immunity. Although regulatory T cells have long been known to impede antitumour responses, other CD4 T cells have recently been implicated in inhibiting this response. Yet, the nature and function of the latter remain unclear.

View Article and Find Full Text PDF

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1β (IL-1β). The dominant effect of IL-1β in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells.

View Article and Find Full Text PDF

Approaches for remote sensing can be used to estimate the influence of changes in environmental conditions on terrestrial plants, providing timely protection of their growth, development, and productivity. Different optical methods, including the informative multispectral and hyperspectral imaging of reflected light, can be used for plant remote sensing; however, multispectral and hyperspectral cameras are technically complex and have a high cost. RGB imaging based on the analysis of color images of plants is definitely simpler and more accessible, but using this tool for remote sensing plant characteristics under changeable environmental conditions requires the development of methods to increase its informativity.

View Article and Find Full Text PDF

Local actions of stressors induce electrical signals (ESs), influencing photosynthetic processes and probably increasing tolerance to adverse factors in higher plants. However, the participation of well-known depolarization ESs (action potentials and variation potentials) in these responses seems to be rare under natural conditions, particularly in the case of variation potentials, which are induced by extreme stressors (e.g.

View Article and Find Full Text PDF

Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane.

View Article and Find Full Text PDF

Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells.

View Article and Find Full Text PDF

Photodamage of photosynthetic electron transport is a key mechanism of disruption of photosynthesis in plants under action of stressors. This means that investigation of photodamage is an important task for basic and applied investigations. However, its complex mechanisms restrict using experimental methods of investigation for this process; the development of mathematical models of photodamage and model-based analysis can be used for overcoming these restrictions.

View Article and Find Full Text PDF

Long-distance electrical signals caused by the local action of stressors influence numerous physiological processes in plants including photosynthesis and increase their tolerance to the action of adverse factors. Depolarization electrical signals were mainly investigated; however, we earlier showed that hyperpolarization electrical signals (HESs) can be caused by moderate stressors (e.g.

View Article and Find Full Text PDF

Local action of stressors induces fast changes in physiological processes in intact parts of plants including photosynthetic inactivation. This response is mediated by generation and propagation of depolarization electrical signals (action potentials and variation potentials) and participates in increasing plant tolerance to action of adverse factors. Earlier, we showed that a local action of physiological stimuli (moderate heating and blue light), which can be observed under environmental conditions, induces hyperpolarization electrical signals (system potentials) in wheat plants.

View Article and Find Full Text PDF

Parameters of illumination including the spectra, intensity, and photoperiod play an important role in the cultivation of plants under greenhouse conditions, especially for vegetables such as lettuce. We previously showed that illumination by a combination of red, blue, and white LEDs with a high red light intensity, was optimal for lettuce cultivation; however, the effect of the photoperiod on lettuce cultivation was not investigated. In the current work, we investigated the influence of photoperiod on production (total biomass and dry weight) and parameters of photosynthesis, respiration rate, and relative chlorophyll content in lettuce plants.

View Article and Find Full Text PDF

Photosynthesis is an important process in plants which influences their development and productivity. Many factors can control the efficiency of photosynthesis, including CO conductance of leaf mesophyll, which affects the CO availability for Rubisco. It is known that electrical stress signals can decrease this conductance, and the response is probably caused by inactivation of H-ATPase in the plasma membrane.

View Article and Find Full Text PDF

Photosynthesis is a key process in plants that can be strongly affected by the actions of environmental stressors. The stressor-induced photosynthetic responses are based on numerous and interacted processes that can restrict their experimental investigation. The development of mathematical models of photosynthetic processes is an important way of investigating these responses.

View Article and Find Full Text PDF

In environmental conditions, plants can be affected by the action of numerous abiotic stressors. These stressors can induce both damage of physiological processes and adaptive changes including signaling-based changes. Development of optical methods of revealing influence of stressors on plants is an important task for plant investigations.

View Article and Find Full Text PDF

Local damage to plants can induce fast systemic physiological changes through generation and propagation of electrical signals. It is known that electrical signals influence numerous physiological processes including photosynthesis; an increased plant tolerance to actions of stressors is a result of these changes. It is probable that parameters of electrical signals and fast physiological changes induced by these signals can be modified by the long-term actions of stressors; however, this question has been little investigated.

View Article and Find Full Text PDF

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g.

View Article and Find Full Text PDF

The use of photoconversion coatings is a promising approach to improving the quality of light when growing plants in greenhouses in low light conditions. In this work, we studied the effect of fluoropolymer coatings, which produce photoconversion of UV-A radiation and violet light into blue and red light, on the growth and resistance to heat stress of tomato plants ( L.).

View Article and Find Full Text PDF

Magnetic field oscillations resulting from atmospheric events could have an effect on growth and development of plants and on the responsive reactions of plants to other environmental factors. In the current work, extremely low-frequency magnetic field (14.3 Hz) was shown to modulate light-induced electric reactions of wheat ( L.

View Article and Find Full Text PDF

Chlorophyll fluorescence imaging was used to study potato virus X (PVX) infection of . Infection-induced changes in chlorophyll fluorescence parameters (quantum yield of photosystem II photochemistry () and non-photochemical fluorescence quenching (NPQ)) in the non-inoculated leaf were recorded and compared with the spatial distribution of the virus detected by the fluorescence of GFP associated with the virus. We determined infection-related changes at different points of the light-induced chlorophyll fluorescence kinetics and at different days after inoculation.

View Article and Find Full Text PDF