Publications by authors named "Vladimir Skirda"

Much attention has been given to studying the translational diffusion of globular proteins, whereas the translational diffusion of intrinsically disordered proteins (IDPs) is less studied. In this study, we investigate the translational diffusion and how it is affected by the self-association of an IDP, κ-casein, using pulsed-field gradient nuclear magnetic resonance and time-resolved Förster resonance energy transfer. Using the analysis of the shape of diffusion attenuation and the concentration dependence of κ-casein diffusion coefficients and intermolecular interactions, we demonstrate that κ-casein exhibits continuous self-association.

View Article and Find Full Text PDF

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.).

View Article and Find Full Text PDF

According to actual literature data, hyaluronic acid (HA) that is presented in the extracellular matrix can interact with proteins and thereby affect several important functions of the cell membrane. The purpose of this work was to reveal the features of the interaction of HA with proteins using the PFG NMR method by sampling two systems: aqueous solutions of HA with bovine serum albumin (BSA) and aqueous solutions of HA with hen egg-white lysozyme (HEWL). It was found that the presence of BSA in the HA aqueous solution initiates a certain additional mechanism; as a result, the population of HA molecules in the gel structure increases to almost 100%.

View Article and Find Full Text PDF

The results of NMR, and especially pulsed field gradient NMR (PFG NMR) investigations, are summarized. Pulsed field gradient NMR technique makes it possible to investigate directly the partial self-diffusion processes in spatial scales from tenth micron to millimeters. Modern NMR spectrometer diffusive units enable to measure self-diffusion coefficients from 10 m/s to 10 m/s in different materials on H, H, Li, C, F, Na, P, Cs nuclei.

View Article and Find Full Text PDF

In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and β-cyclodextrin (β-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/β-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm upon complexation.

View Article and Find Full Text PDF

Translational (or self-diffusion) coefficient in dilute solution is inversely proportional to the size of a diffusing molecule, and hence self-diffusion coefficient measurements have been applied to determine the effective hydrodynamic radii for a range of native and nonnative protein conformations. In particular, translational diffusion coefficient measurements are useful to estimate the hydrodynamic radius of natively (or intrinsically) disordered proteins in solution, and, thereby, probe the compactness of a protein as well as its change when environmental parameters such as temperature, solution pH, or protein concentration are varied. The situation becomes more complicated in concentrated solutions.

View Article and Find Full Text PDF

The translational diffusion coefficient is highly sensitive to the size change of diffusing species and is ideally suited for the study of molecular association. Here, we used translational diffusion measurements by a pulsed-field gradient nuclear magnetic resonance (PFG NMR) technique to investigate the role of disulfide bonds in the formation of a supramolecular gel-like structure in the concentrated solution of α-casein. To reduce disulfide bonds, we added a commonly used reducing reagent tris(2-carboxyethyl)phosphine (TCEP) to α-casein solution.

View Article and Find Full Text PDF

Translational diffusion is the major mode of macromolecular transport in leaving organisms, and therefore it is vital to many biological and biotechnological processes. Although translational diffusion of proteins has received considerable theoretical and experimental scrutiny, much of that attention has been directed toward the description of globular proteins. The translational diffusion of intrinsically disordered proteins (IDPs), however, is much less studied.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is an anionic biopolymer that is present in many tissues and can be involved in cancerous neoformations. HA can form complexes with proteins (particularly, serum albumin) in the body. However, HA structures and processes involving HA have not been extensively studied by NMR because the molecule's rigid structure makes these studies problematic.

View Article and Find Full Text PDF

The gated decoupled (13)C NMR spectra of a dipeptide (Glu-Trp) and a tetrapeptide (NAc-Ser-Phe-Val-Gly-OMe) were recorded in D(2)O and in a lyotropic alignment medium (pentaethylene glycol monododecyl ether/n-hexanol). The residual dipolar couplings were extracted as the differences between the observed couplings for the magnetic nuclei dissolved in the latter and former media. Using a computational optimization, the spatial structures of the compounds were calculated starting from their respective low energy conformations obtained on a semiempirical basis.

View Article and Find Full Text PDF

Fully and partially filled with tridecane quartz sand was studied by different NMR techniques. The set of NMR experiments was carried out to obtain information about porous media geometry and fluid localization in it in case of partially filled porous space. The study was done using three NMR approaches: pulse field gradient NMR (PFG NMR), DDif experiment and tau-scanning experiment.

View Article and Find Full Text PDF

The water self-diffusion behavior in chlorella water suspension was investigated by pulsed field gradient NMR technique. Three types of water was determined, which differs according to the self-diffusion coefficients; bulk water, extracellular and intracellular water. Intracellular and extracellular water self-diffusion were restricted, and the sizes of restriction regions were 3.

View Article and Find Full Text PDF

The water self-diffusion behavior in yeast cell water suspension was investigated by pulsed field gradient NMR techniques. Three types of water were detected, which differ according to the self-diffusion coefficients: bulk water, extracellular and intracellular water. Intracellular and extracellular water self-diffusion was restricted; the sizes of restriction regions were approximately 3 and 15-20 microm, respectively.

View Article and Find Full Text PDF

The self-diffusion coefficients of globular proteins (myoglobin, bovine serum albumin, barstar, lysozyme) in aqueous solutions at different temperatures and pH values are obtained by pulsed-gradient spin-echo NMR, and their concentration dependence is analyzed. The generalized concentration dependence of globular protein self-diffusion coefficients is empirically established, and compared to the concentration dependence of diffusion coefficients of flexible polymers and rigid Brownian particles.

View Article and Find Full Text PDF