An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFHere at the first time we suggested that the surface plasmon-polariton phenomenon which it is well described in metallic nanostructures could also be used for explanation of the unexpectedly strong oxidative effects of the low-intensity laser irradiation in living matters (cells, tissues, organism). We demonstrated that the narrow-band laser emitting at 1265 nm could generate significant amount of the reactive oxygen species (ROS) in both HCT116 and CHO-K1 cell cultures. Such cellular ROS effects could be explained through the generation of highly localized plasmon-polaritons on the surface of mitochondrial crista.
View Article and Find Full Text PDFRiboflavin (vitamin B2) is an essential nutrition component serving as a precursor of coenzymes FMN and FAD that are involved mostly in reactions of oxidative metabolism. Riboflavin is produced in commercial scale and is used in feed and food industries, and in medicine. The yeast Candida famata (Candida flareri) belongs to the group of so called "flavinogenic yeasts" which overproduce riboflavin under iron limitation.
View Article and Find Full Text PDFMethylotrophic yeasts are unique eukaryotic organisms, that can metabolize toxic one-carbon substrate, methyl alcohol or methanol. About 50 species of methylotrophic yeasts is known, among them 4 species are the best studied: Pichia methanolica, Hansenula polymorpha, Pichia pastoris i Candida boidinii. These organisms, especially P.
View Article and Find Full Text PDFFor Gadoid fishes, formaldehyde can be generated in tissues in huge amounts during endogenous enzymatic degradation of natural osmoprotectant trimethylamine-N-oxide. This paper describes two enzymatic methods for assay of formaldehyde in fish food products using alcohol oxidase (AOX) and formaldehyde dehydrogenase (FdDH) isolated from the thermotolerant methylotrophic yeast Hansenula polymorpha. AOX-based method exploits an ability of the enzyme to oxidise a hydrated form of formaldehyde to formic acid and hydrogen peroxide monitored in peroxidase-catalysed colorimetric reaction.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
November 2011
The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S.
View Article and Find Full Text PDF