Publications by authors named "Vladimir Shubin"

The bites of hard ticks are the major route of transmission of tick-borne infections to humans, causing thousands of cases of diseases worldwide. However, the characteristics of the human population that is exposed to tick bites are still understudied. This work is aimed at characterizing both the structure of the population directly contacting ticks and the human behavioral features associated with tick bites.

View Article and Find Full Text PDF

Arginine (Arg) is frequently used in biotechnology and pharmaceutics to stabilize protein preparations. When using charged ions like Arg, it is necessary to take into account their contribution to the increase in ionic strength, in addition to the effect of Arg on particular processes occurring under the conditions of constancy of ionic strength. Here, we examined contribution of ionic strength (0.

View Article and Find Full Text PDF

Cyanobacterial photosystem I (PSI) constitutes monomeric and trimeric pigment-protein complexes whose optical properties are marked by the presence of long-wavelength absorption bands. In spite of numerous experimental studies, the nature of these bands is still under debate and requires intensive theoretical analysis. Collecting together the data of linear spectroscopy and single-molecule spectroscopy (SMS) of PSI from Arthrospira platensis, we performed quantum modeling of the optical response based on molecular exciton theory (ET) and the multimode Brownian oscillator model (MBOM).

View Article and Find Full Text PDF

The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζ) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase (UV-Ph) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζ was demonstrated in the presence of 0.

View Article and Find Full Text PDF

Chemical chaperones are a class of small molecules which enhance folding and prevent aggregation of proteins. Investigation of their effects on the processes of protein aggregation is of importance for further understanding of implication of protein aggregation in neurodegenerative diseases, as well as for solving biotechnological tasks. The effects of chemical chaperones trehalose and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on the kinetics of aggregation of UV-irradiated muscle glycogen phosphorylase b (UV-Phb) at 37 °C have been studied.

View Article and Find Full Text PDF

Based on single molecule spectroscopy analysis and our preliminary theoretical studies, the linear and fluorescence spectra of the PSI trimer from with different realizations of the static disorder were modeled at cryogenic temperature. Considering the previously calculated spectral density of chlorophyll, an exciton model for the PSI monomer and trimer including the red antenna states was developed taking into account the supposed similarity of PSI antenna structures from , , and . The red Chls in the PSI monomer were assumed to be in the nearest proximity of the reaction center.

View Article and Find Full Text PDF

In this work the effect of ionic strength and arginine on the kinetics of aggregation of UV-irradiated muscle glycogen phosphorylase b (UV-Phb) was studied using dynamic light scattering at 37 °C at various ionic strengths (0.02-0.7 M).

View Article and Find Full Text PDF

Different test systems are used to characterize the anti-aggregation efficiency of molecular chaperone proteins and of low-molecular-weight chemical chaperones. Test systems based on aggregation of UV-irradiated protein are of special interest because they allow studying the protective action of different agents at physiological temperatures. The kinetics of UV-irradiated glycogen phosphorylase b (UV-Phb) from rabbit skeletal muscle was studied at 37°C using dynamic light scattering in a wide range of protein concentrations.

View Article and Find Full Text PDF

The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al.

View Article and Find Full Text PDF

Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.

View Article and Find Full Text PDF

Over the past two decades, much information has appeared on electrostatically driven molecular mechanisms of protein self-assembly and formation of aggregates of different morphology, varying from soluble amorphous structures to highly-ordered amyloid-like fibrils. Protein aggregation represents a special tool in biomedicine and biotechnology to produce biological materials for a wide range of applications. This has awakened interest in identification of pH-triggered regulators of transformation of aggregation-prone proteins into structures of higher order.

View Article and Find Full Text PDF

Femtosecond absorption spectroscopy was applied to study for the first time excitation dynamics in isolated photosystem I trimers from Arthrospira platensis, which display extremely long-wavelength absorption peaks. Pump-probe spectra observed at 77K in the timescale of dozens of picoseconds upon 70-fs excitation revealed two maxima near 710 and 730 nm, which correspond to red chlorophyll forms. Bleaching at 680 nm developed in ∼ 200 fs, whereas the bleaching kinetics at 710 and 730 nm exhibited two components with time constants of 1 and 5.

View Article and Find Full Text PDF

The objective of this study is to elucidate the role of low-molecular weight biogenic agents, resembling dietary-derived products naturally occurring in the intestine, in the regulation of transformations of soluble aggregation-prone insulin into aggregates of higher order. In the course of model experiments, a striking potential of the amino acids L-arginine (Arg) and L-lysine (Lys) and a number of positively charged peptides to induce formation of heterogenic supramolecular structures of insulin was demonstrated under environment conditions where the protein aggregation in their absence was not observed. This phenomenon is assumed to be essential for elaboration of strategies of oral delivery of insulin to diabetic patients supplemented by controlling the pH values of the intestinal environment where the drug is released.

View Article and Find Full Text PDF

Protein misfolding, self-assembly, and aggregation are an essential problem in cell biology, biotechnology, and biomedicine. The protein aggregates are very different morphologically varying from soluble amorphous aggregates to highly ordered amyloid-like fibrils. The objective of this study was to elucidate the role of the amino acid L-arginine (Arg), a widely used suppressor of protein aggregation, in the regulation of transformations of soluble aggregation-prone proteins into supramolecular structures of higher order.

View Article and Find Full Text PDF

The photostability of P700 cation radical (P700+) was studied by evaluating the quantum yields of P700(+) photodestruction in photosystem I (PSI) complexes of the cyanobacterium Arthrospira platensis. The time courses of P700+ photodestruction in PSI trimers and monomers have been measured in aerobic conditions under selective excitation of far-red absorption band of P700+ by intense light of laser diodes. Long-term exposure of PSI complexes to 808 or 870 nm laser light caused destruction of P700+ and antenna chlorophylls.

View Article and Find Full Text PDF

Core antenna and reaction centre of photosystem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(-), 683-685(-), 696-697(-), and 711(-) nm are a common feature of used PSI complexes.

View Article and Find Full Text PDF