Publications by authors named "Vladimir R Chechetkin"

Gene expression patterns are very sensitive to external influences and are reflected in phenotypic changes. It was previously described that transferring melanoma cells from a plastic surface to Matrigel led to formation of de novo vascular networks-vasculogenic mimicry-that are characteristic to a stemness phenotype in aggressive tumors. Up to now there was no detailed data about the gene signature accompanying this process.

View Article and Find Full Text PDF

Different developmental genes shape frequent dynamic inter-chromosomal contacts with rDNA units in human and cells. In the course of differentiation, changes in these contacts occur, coupled with changes in the expression of hundreds of rDNA-contacting genes. The data suggest a possible role of nucleoli in the global regulation of gene expression.

View Article and Find Full Text PDF

The expression of clusters of rDNA genes influences pluripotency; however, the underlying mechanisms are not yet known. These clusters shape inter-chromosomal contacts with numerous genes controlling differentiation in human and cells. This suggests a possible role of these contacts in the formation of 3D chromosomal structures and the regulation of gene expression in development.

View Article and Find Full Text PDF

In this paper, we describe a method for the study of colocalization effects between stretch-stretch and stretch-point genome tracks based on a set of indices varying within the (-1, +1) interval. The indices combine the distances between the centers of neighboring stretches and their lengths. The extreme boundaries of the interval correspond to the complete colocalization of the genome tracks or its complete absence.

View Article and Find Full Text PDF

Double-strand DNA breakes (DSBs) are the most deleterious and widespread examples of DNA damage. They inevitably originate from endogenous mechanisms in the course of transcription, replication, and recombination, as well as from different exogenous factors. If not properly repaired, DSBs result in cell death or diseases.

View Article and Find Full Text PDF

Small noncoding RNAs of different origins and classes play several roles in the regulation of gene expression. Here, we show that diverged and rearranged fragments of rDNA units are scattered throughout the human genome and that endogenous small noncoding RNAs are processed by the Microprocessor complex from specific regions of ribosomal RNAs shaping hairpins. These small RNAs correspond to particular sites inside the fragments of rDNA that mostly reside in intergenic regions or the introns of about 1500 genes.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic spurred deeper research into the molecular mechanisms of coronaviruses, focusing on transmission risks across species to better understand their evolutionary background.
  • The study analyzed ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of seven known human coronaviruses and related animal coronaviruses, revealing a quasi-periodic distribution of these signals across the genomes.
  • Findings suggest that certain motifs are highly conserved across different coronavirus lineages, which could serve as potential therapeutic targets and may influence how these viruses recombine and co-infect.
View Article and Find Full Text PDF

Chromosomes are organized into 3D structures that are important for the regulation of gene expression and differentiation. Important role in formation of inter-chromosome contacts play rDNA clusters that make up nucleoli. In the course of differentiation, heterochromatization of rDNA units in mouse cells is coupled with the repression or activation of different genes.

View Article and Find Full Text PDF

The genomic ssRNA of coronaviruses is packaged within a helical nucleocapsid. Due to transitional symmetry of a helix, weakly specific cooperative interaction between ssRNA and nucleocapsid proteins leads to the natural selection of specific quasi-periodic assembly/packaging signals in the related genomic sequence. Such signals coordinated with the nucleocapsid helical structure were detected and reconstructed in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2.

View Article and Find Full Text PDF

Human rDNA clusters form numerous contacts with different chromosomal regions as evidenced by chromosome conformation capture data. Heterochromatization of rDNA genes leads to heterochromatization in different chromosomal regions coupled with the activation of the transcription of genes related to differentiation. These data suggest a role for rDNA clusters in the regulation of many human genes.

View Article and Find Full Text PDF

RNAi has been suggested for use in gene therapy of HIV/AIDS, but the main problem is that HIV-1 is highly variable and could escape attack from the small interfering RNAs (siRNAs) due to even single nucleotide substitutions in the potential targets. To exhaustively check the variability in selected RNA targets of HIV-1, we used ultra-deep sequencing of six regions of HIV-1 from the plasma of two independent cohorts of patients from Russia. Six RNAi targets were found that are invariable in 82%-97% of viruses in both cohorts and are located inside the domains specifying reverse transcriptase (RT), integrase, vpu, gp120, and p17.

View Article and Find Full Text PDF

Any method for silencing the activity of the HIV-1 retrovirus should tackle the extremely high variability of HIV-1 sequences and mutational escape. We studied sequence variability in the vicinity of selected RNA interference (RNAi) targets from isolates of HIV-1 subtype A in Russia, and we propose that using artificial RNAi is a potential alternative to traditional antiretroviral therapy. We prove that using multiple RNAi targets overcomes the variability in HIV-1 isolates.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most common malignancy in industrialized countries. Despite the advances in diagnostics and development of new drugs, the 5-year survival remains only 60-65%. Our approach to early diagnostics of CRC is based on the determination of serological signatures with an array of hemispherical hydrogel cells containing immobilized proteins and oligosaccharides (glycochip).

View Article and Find Full Text PDF

Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy.

View Article and Find Full Text PDF

The broad class of tasks in genetics and epigenetics can be reduced to the study of various features that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge amount of data stored in the genome-scale databases cannot be achieved without the software packages based on the analytical criteria. However, strong inhomogeneity of genome tracks hampers the development of relevant statistics.

View Article and Find Full Text PDF

Spectral entropy and GC content analyses reveal comprehensive structural features of DNA sequences. To illustrate the significance of these features, we analyze the β-esterase gene cluster, including the Est-6 gene and the ψEst-6 putative pseudogene, in seven species of the Drosophila melanogaster subgroup. The spectral entropies show distinctly lower structural ordering for ψEst-6 than for Est-6 in all species studied.

View Article and Find Full Text PDF

The level of supercoiling in the chromosome can affect gene expression. To clarify the basis of supercoiling sensitivity, we analyzed the structural features of nucleotide sequences in the vicinity of promoters for the genes with expression enhanced and decreased in response to loss of chromosomal supercoiling in Escherichia coli. Fourier analysis of promoter sequences for supercoiling-sensitive genes reveals the tendency in selection of sequences with helical periodicities close to 10nt for relaxation-induced genes and to 11nt for relaxation-repressed genes.

View Article and Find Full Text PDF

An approach to circuit renaturation-hybridization of dsDNA on oligonucleotide microchips is described. A close circuit cycling device has been developed, and the feasibility of the proposed technique was demonstrated on two platforms. First, a commercial microchip for detection of rifampicin resistance in Mycobacterium tuberculosis was used.

View Article and Find Full Text PDF

Gel-based oligonucleotide microarray approach was developed for quantitative profiling of binding affinity of a protein to single-stranded DNA (ssDNA). To demonstrate additional capabilities of this method, we analyzed the binding specificity of ribonuclease (RNase) binase from Bacillus intermedius (EC 3.1.

View Article and Find Full Text PDF

We perform spectral entropy and GC content analyses in the beta-esterase gene cluster, including the Est-6 gene and the psiEst-6 putative pseudogene, in seven species of the Drosophila melanogaster species subgroup. psiEst-6 combines features of functional and nonfunctional genes. The spectral entropies show distinctly lower structural ordering for psiEst-6 than for Est-6 in all species studied.

View Article and Find Full Text PDF