Affinity maturation of B lymphocytes is a process that includes somatic hypermutation and class switch recombination. Class switch recombination is a fundamental factor of the human adaptive immunity. The perturbation of this process has an adverse effect on human health, and results in global chromosome rearrangements and cell transformation.
View Article and Find Full Text PDFChronic inflammation is associated with cancer. CXCL8 promotes tumor microenvironment construction through recruiting leukocytes and endothelial progenitor cells that are involved in angiogenesis. It also enhances tumor cell proliferation and migration.
View Article and Find Full Text PDFPreviously, we have shown that N,N-dimethylacetamide (DMA) prevents inflammation-induced preterm birth in a murine model, inhibits LPS-induced increases in placental pro-inflammatory cytokines and up-regulates the anti-inflammatory cytokine Interleukin-10 (IL-10). However, DMA's mechanism of action remains to be elucidated. In the current study we investigate how DMA produces its anti-inflammatory effect.
View Article and Find Full Text PDFRev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER).
View Article and Find Full Text PDFIncreased expression of the immunosuppressive cytokines, TGF-β1 and IL-10, is a hallmark of the advanced stages of cutaneous T cell lymphoma (CTCL), where it has been associated with suppressed immunity, increased susceptibility to infections, and diminished antitumor responses. Yet, little is known about the transcriptional regulation of TGF-β1 and IL-10 in CTCL, and about their function in regulating the CTCL cell responses. In this article, we show that TGF-β1 and IL-10 expression in CTCL cells is regulated by NF-κB and suppressed by bortezomib (BZ), which has shown promising results in the treatment of CTCL.
View Article and Find Full Text PDFGene expression is orchestrated by a complex network of signal transduction pathways that typically originate on cell surface receptors and culminate in DNA-binding transcription factors, which translocate to the nucleus and bind cis-regulatory elements in promoter regions of genes, thereby inducing de novo synthesis of the nascent RNA transcripts and their splicing. Gene expression arrays monitor abundance of the matured, spliced cDNA, which undergoes additional posttranscriptional modifications that greatly affect the half-life of the cDNA. Thus, the relative abundance of cDNA is not necessarily commensurable with the activity of promoters of the corresponding genes.
View Article and Find Full Text PDFAffinity maturation of B lymphocytes, a process that includes somatic hypermutation and class switch recombination, initiates global DNA rearrangements. The interruption of this process has an adverse effect on human health and results in immunodeficiency and autoimmune disease. Class switch recombination is a fundamental factor of the human adaptive immunity.
View Article and Find Full Text PDFJ Biol Chem
January 2014
Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive.
View Article and Find Full Text PDFTo better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5'-sugar phosphate group (i.e.
View Article and Find Full Text PDFMany human diseases are caused by genetic mutations that decrease protein stability. Such mutations may not specifically affect an active site, but can alter protein folding, abundance, or localization. Here we describe a high-throughput cell-based stability assay, IDESA (intra-DHFR enzyme stability assay), where stability is coupled to cell proliferation in the model yeast, Saccharomyces cerevisiae.
View Article and Find Full Text PDFWe explored DNA metabolic events potentially relevant to somatic hypermutation (SHM) of immunoglobulin genes using a yeast model system. Double-strand break (DSB) formation has been discussed as a possible component of the SHM process during immunoglobulin gene maturation. Yet, possible mechanisms linking DSB formation with mutagenesis have not been well understood.
View Article and Find Full Text PDFDeoxyribose phosphate (dRP) removal by DNA polymerase beta (Pol beta) is a pivotal step in base excision repair (BER). To identify BER cofactors, especially those with dRP lyase activity, we used a Pol beta null cell extract and BER intermediate as bait for sodium borohydride crosslinking. Mass spectrometry identified the high-mobility group box 1 protein (HMGB1) as specifically interacting with the BER intermediate.
View Article and Find Full Text PDFSomatic hypermutation (SHM) is a fundamental process in immunoglobulin gene maturation that results in increased affinity of antibodies toward antigens. In one hypothesis explaining SHM in human B cells, the process is initiated by enzymatic deamination of cytosine to uracil in the immunoglobulin gene V-region and this in turn triggers mutation-prone forms of uracil-DNA base excision repair (BER). Yet, an uncertainty with this model is that BER of uracil-DNA in mammalian cells is generally error-free, wherein DNA polymerase beta (pol beta) conducts gap-filling synthesis by insertion of bases according to Watson-Crick rules.
View Article and Find Full Text PDFDNA polymerase lambda (pol lambda) is a member of the X family of DNA polymerases that has been implicated in both base excision repair and non-homologous end joining through in vitro studies. However, to date, no phenotype has been associated with cells deficient in this DNA polymerase. Here we show that pol lambda null mouse fibroblasts are hypersensitive to oxidative DNA damaging agents, suggesting a role of pol lambda in protection of cells against the cytotoxic effects of oxidized DNA.
View Article and Find Full Text PDFDNA Repair (Amst)
September 2005
The DNA polymerase beta (Pol beta) null background renders mouse embryonic fibroblast (MEF) cells base excision repair deficient and hyper-mutagenic upon treatment with the monofunctional alkylating agent, methyl methanesulfonate (MMS). This effect involves an increase in all types of base substitutions, with a modest predominance of G to A transitions. In the present study, we examined the hypothesis that the MMS-induced mutagenesis in the Pol beta null MEF system is due to a lesion bypass mechanism.
View Article and Find Full Text PDFClass switch recombination, gene conversion, and somatic hypermutation that diversify rearranged Ig genes to produce various classes of high affinity Abs are dependent on the enzyme activation-induced cytosine deaminase (AID). Evidence suggests that somatic hypermutation is due to error-prone DNA repair that is initiated by AID-mediated deamination of cytosine in DNA, whereas the mechanism by which AID controls recombination remains to be elucidated. In this study, using a yeast model system, we have observed AID-dependent recombination.
View Article and Find Full Text PDF