Publications by authors named "Vladimir Pitschmann"

The extreme toxicity of nerve agents and the broad spectrum of their physical and chemical properties, enabling the use of these agents in a variety of tactical situations, is a continuing challenge in maintaining the knowledge and capability to detect them, as well as in finding new effective methods. Despite significant advances in the instrumentation of the analysis of nerve agents, relatively simple methods based on the evaluation of colour signals (absorption and fluorescence), in particular those using the cholinesterase reaction, continue to be of importance. This review provides a brief presentation of the current status of these simple methods, with an emphasis on military applications, and illustrates the high interest of the professional community in their further development.

View Article and Find Full Text PDF

The emergence of modern chemical weapons and chemical warfare is traditionally associated with World War I, but the use of poisons in the military has its roots deep in the past. The sources of these poisons have always been natural agents that also served as medicines. This relationship between poison and medicine, and nowadays between chemical warfare and medicine, or between 'military chemistry' and pharmacy, appears to be very important for understanding not only the history but also the possible future of both phenomena.

View Article and Find Full Text PDF

The use of a cellulose detection film as a carrier for a colorimetric sensor to detect phosgene and allied compounds to be evaluated primarily visually is studied. For the case study, a benzimidazole-rhodamine dye and an acetyl cellulose film were selected. The detection complex was modified using cyclic ether 18-crown-6 to achieve more desirable analytic properties.

View Article and Find Full Text PDF

Pharmaceutical technology offers various dosage forms that can be applied interdisciplinary. One of them are spherical pellets which could be utilized as a carrier in emerging second-generation detection tubes. This detection system requires carriers with high specific surface area (SSA), which should allow better adsorption of toxic substances and detection reagents.

View Article and Find Full Text PDF

Currently, nerve agents are often used in terrorist attacks or assassinations. In such cases, it is necessary to detect them quickly, accurately and easily right in the field. Detection tubes, which are small devices containing pellets with immobilized cholinesterase and detection reagents, meet these conditions.

View Article and Find Full Text PDF

This paper deals with the innovation of the Czech colorimetric biosensor Detehit designed for the simple, fast, and sensitive detection of nerve agents. The innovation is based on the use of an indicator consisting of a mixture of two triphenylmethane dyes, Guinea green B and a basic fuchsin, on a glass nanofiber filter paper carrier. The advantage of this solution is the blue-red color transition, which is much more visible than the white-yellow transition of other Detehit biosensors.

View Article and Find Full Text PDF

Pellets with an immobilized enzyme (acetyl- or butyrylcholinesterase) are the up-to-date type of carriers used for the detection of nerve agents (soman, sarin, tabun, VX, Novichok) and other cholinesterase inhibitors such as organophosphate and carbamate insecticides (parathion, malathion). They are used in the glass detection tubes as a layer containing the enzyme together with the second layer, which contains a colorimetric reagent and substrate. The detection method is based on the visually or spectrophotometrically observable Ellman's reaction, which develops a yellow color in the absence of the cholinesterase inhibitor; otherwise, the detector preserves its original color (preferably white).

View Article and Find Full Text PDF

Detection tubes are small devices for the colorimetric enzymatic detection of cholinesterase inhibitors such as sarin, soman, VX nerve agents and substances denoted as Novichok. These detectors contain carriers in the form of pellets with immobilized cholinesterase, substrate and detection reagent. Their advantages are portability, sensitivity and simplicity, enabling fast detection of such compounds from air and water in case of a terrorist attack or war.

View Article and Find Full Text PDF

Colorimetric biosensors of cholinesterase inhibitors are ideal for fast, reliable, and very simple detection of agents in air, in water, and on surfaces. This paper describes an innovation of the Czech Detehit biosensor, which is based on a biochemical enzymatic reaction visualized by using Ellman's reagent as a chromogenic indicator. The modification basically consists of a much more distinct color response of the biosensor, attained through optimization of the reaction system by using Guinea Green B as the indicator.

View Article and Find Full Text PDF

The main objective of the presented research was to prepare an innovative carrier as a filler for detection tubes in the form of double-coated pellets with a very significant color transition during the detection of cholinesterase inhibitors such as nerve agents, organophosphorus or carbamate insecticides in liquids that is observable visually and also spectrophotometrically at 412 nm. The pellet cores were prepared by the extrusion/spheronization method. Consecutively, two different coats were applied on the pellet cores in the coating device using the Wurster column method.

View Article and Find Full Text PDF

Cholinesterase inhibitors are widely used as pesticides in agriculture, but also form a group of organophosphates known as nerve chemical warfare agents. This calls for close attention regarding their detection, including the use of various biosensors. One such biosensor made in the Czech Republic is the Detehit, which is based on a cholinesterase reaction that is assessed using a colour indicator-the Ellman's reagent-which is anchored on cellulose filter paper together with the substrate.

View Article and Find Full Text PDF

The aim of the presented research was the preparation of an innovative carrier with significantly improved properties for the fast and sensitive detection of cholinesterase inhibitors such as nerve agents. This innovative carrier was in the form of spherical pellets containing different amounts of Neusilin. Neusilin is a synthetic and amorphous form of magnesium aluminometasilicate with a high specific surface area, and the immobilized enzyme butyrylcholinesterase with an activity of 50nkat·g.

View Article and Find Full Text PDF

Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review.

View Article and Find Full Text PDF

Objectives: The aim of the study was to use methods of pharmaceutical technology, and prepare carriers in the form of pellets suitable as a filling of detection tubes for enzymatic detection of cholinesterase inhibitors. The enzymatic detection was based on enzymatic hydrolysis of acetylthiocholine iodide and the subsequent colour reaction of its hydrolysis product with Ellman's reagent. The suitable carriers should be in the form of white, regular and sufficiently mechanically resistant particles of about 1 mm allowing it to capture the enzyme during the impregnation process and ensuring its high activity for enzymatic detection.

View Article and Find Full Text PDF

This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described.

View Article and Find Full Text PDF