Publications by authors named "Vladimir Pavelyev"

Photodetectors that can operate over a wide range of temperatures, from cryogenic to elevated temperatures, are crucial for a variety of modern scientific fields, including aerospace, high-energy science, and astro-particle science. In this study, we investigate the temperature-dependent photodetection properties of titanium trisulfide (TiS)- in order to develop high-performance photodetectors that can operate across a wide range of temperatures (77 K-543 K). We fabricate a solid-state photodetector using the dielectrophoresis technique, which demonstrates a quick response (response/recovery time ~0.

View Article and Find Full Text PDF

Coherent terahertz beams with radial polarization of the 1st, 2nd, and 3rd orders have been generated with the use of silicon subwavelength diffractive optical elements (DOEs). Silicon elements were fabricated by a technology similar to the technology used before for the fabrication of DOEs forming laser terahertz beams with pre-given mode content. The beam of the terahertz Novosibirsk Free Electron Laser was used as the illuminating beam.

View Article and Find Full Text PDF

In this paper, we present the work of designing and fabricating a new generation of microelectromechanical systems (MEMS) based microfluidic preconcentrators (MFP) for volatile organic compounds (VOCs) quantification. The main objective of this work is to quantify the n-pentane impurities using MFP for sample preparation. The MFP was analyzed using Hewlett-Packard 5890 gas chromatography, having a flame ionization detector under isothermal conditions.

View Article and Find Full Text PDF

An increase in the radiation power of terahertz (THz) sources requires the development of new optics working with it. The laser-assisted replication technique is proposed to fabricate the diamond cylindrical diffractive lens with a continuous profile for the THz range. The procedure involves the inverted structuring of a silicon substrate by laser ablation for its further replication to the diamond surface utilizing the chemical vapor deposition process.

View Article and Find Full Text PDF

We study diffraction of Bessel vortex beams with topological charges of ±1 and ±2 and a wavelength of 130 µm on two-dimensional amplitude periodic gratings. Results of simulations and experiments at the Novosibirsk Free Electron Laser facility show that there appear periodic patterns in the planes corresponding to the classical main and fractional Talbot planes, but instead of self-images of the holes, there are observed periodic lattices of annular vortex microbeams with topological charges corresponding to the charge of the beam illuminating the grating. The ring diameters are the same for beams with different topological charges, but they are proportional to the grating period and inversely proportional to the diameter of the beam illuminating the grating.

View Article and Find Full Text PDF

We introduce graded photonic quasicrystals and investigate properties of such structures on the example of a Luneburg lens based on a dodecagonal photonic quasicrystal. It is shown that the graded photonic quasicrystal lens has better focusing properties as compared with the graded photonic crystal lens in a frequency range suitable for experimental realization. The proposed graded photonic quasicrystals can be used in optical systems where compact and powerful focusing elements are required.

View Article and Find Full Text PDF

Application of the two-photon polymerization (2PP) technique for the fabrication of binary radial diffractive optical elements (DOEs) to form a bottle-like intensity distribution, or "light bottle," is studied. Computer modeling and fabrication of a binary DOE for the formation of the desired light distributions are realized. The results of scanning electron microscopy analysis of the diffractive relief produced by the 2PP technique and an investigation of the optical properties of the fabricated elements are presented.

View Article and Find Full Text PDF

Application of the two-photon polymerization (2PP) technique for the fabrication of submicron-size relief of radial binary diffractive optical elements (DOE's) is studied. Binary DOE's for the formation of special longitudinal intensity distribution (axial light segment) are realized. Interferometric investigations of the diffractive relief produced by the 2PP-technique and investigations of optical properties of the formed elements are presented.

View Article and Find Full Text PDF