Publications by authors named "Vladimir P Dzyuba"

Owing to the synergistic combination of a hybrid organic-inorganic nature and a chemically active porous structure, metal-organic frameworks have emerged as a new class of crystalline materials. The current trend in the chemical industry is to utilize such crystals as flexible hosting elements for applications as diverse as gas and energy storage, filtration, catalysis, and sensing. From the physical point of view, metal-organic frameworks are considered molecular crystals with hierarchical structures providing the structure-related physical properties crucial for future applications of energy transfer, data processing and storage, high-energy physics, and light manipulation.

View Article and Find Full Text PDF

This is a response to a comment on the interpretation of the origin of the nonlinear changes of optical properties of van der Waals' metal-organic frameworks (MOFs). The concerns are addressed by clarifying potential pitfalls in density functional theory (DFT) simulations, careful analysis of prior literature, and additionally discussing the previous experimental results to emphasize the applicability of the excitonic concept in molecular crystals, such as MOFs.

View Article and Find Full Text PDF

Synergistic combination of organic and inorganic nature in van der Waals metal-organic frameworks supports different types of robust excitons that can be effectively and independently manipulated by light at room temperature, and opens new concepts for all-optical data processing and storage.

View Article and Find Full Text PDF

Using a developed co-precipitation method, we synthesized spherical Fe3O4 nanoparticles with a wide nonlinear absorption band of visible radiation. Optical properties of the synthesized nanoparticles dispersed in an optically transparent copolymer of methyl methacrylate with styrene were studied by optical spectroscopy and z-scan techniques. We found that the electric polarizability of Fe3O4 nanoparticles is altered by low-intensity visible radiation (I ≤ 0.

View Article and Find Full Text PDF