Publications by authors named "Vladimir N Shilov"

Electrokinetic Phenomena in concentrated disperse and colloid systems have been studied employing Spherical Cell Approach for over three decades. The critical review of the advances in this area, which is conducted in the present paper, demonstrates a number of contradictions between the results reported by different authors. These contradictions are largely associated with imposition of boundary conditions at the outer boundary of the representative Spherical Cell.

View Article and Find Full Text PDF

It is shown that the fundamental expression for the complex permittivity epsilons* of a dilute suspension of monodispersed, spherical particles, epsilons*=epsilone*(1+3phid*), where epsilone* is the complex permittivity of the suspending medium and d* the dipolar coefficient, is strictly valid for any value of the volume fraction phi of particles in the suspension, provided that d* is interpreted as the ensemble average value of the dipolar coefficient of the particles and is defined in terms of the macroscopic electric field in the suspension.

View Article and Find Full Text PDF

The dependence of the DC conductivity of diluted colloidal suspensions on the size, zeta potential, and state of motion of the dispersed particles is analyzed both theoretically and numerically. It is shown that the simple formula that represents the conductivity as a sum of products: charge times mobility, taken over all the carriers present in the suspension, is only valid for exceedingly low values of the product kappaa. In contrast, the formulation based on the value of the dipolar coefficient of the suspended particles seems to be valid for all the range of particle sizes.

View Article and Find Full Text PDF

A correction of a recent work on the dependence of the DC conductivity of diluted colloidal suspensions on the size, zeta potential, and state of motion of dispersed particles (C. Grosse, S. Pedrosa, V.

View Article and Find Full Text PDF

The analytical theory of the thin double-layer concentration polarization in dilute suspensions of colloidal particles, generalized by the authors to the case of weak electrolyte solutions [C. Grosse and V. N.

View Article and Find Full Text PDF