The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image.
View Article and Find Full Text PDFThe influence of structural defects, in the form of step lattices, on the spin polarization of the spin-orbit split Shockley surface state of Au(111) has been investigated. Spin- and angle-resolved photoemission data from three vicinal surfaces with different step densities are presented. The spin splitting is preserved in all three cases, and there is no reduction of the spin polarization of individual subbands, including the umklapp bands induced by the step lattice.
View Article and Find Full Text PDF