Publications by authors named "Vladimir N Noskov"

Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning.

View Article and Find Full Text PDF

Although they are organelles without a limiting membrane, nucleoli have an exclusive structure, built upon the rDNA-rich acrocentric short arms of five human chromosomes (nucleolar organizer regions or NORs). This has raised the question: what are the structural features of a chromosome required for its inclusion in a nucleolus? Previous work has suggested that sequences adjacent to the tandemly repeated rDNA repeat units (DJ, distal junction sequence) may be involved, and we have extended such studies by addressing several issues related to the requirements for the association of NORs with nucleoli. We exploited both a set of somatic cell hybrids containing individual human acrocentric chromosomes and a set of Human Artificial Chromosomes (HACs) carrying different parts of a NOR, including an rDNA unit or DJ or PJ (proximal junction) sequence.

View Article and Find Full Text PDF

The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21.

View Article and Find Full Text PDF

Here, we describe an extension of our original transformation-associated recombination (TAR) cloning protocol, enabling selective isolation of DNA segments from microbial genomes. The technique is based on the previously described TAR cloning procedure developed for isolation of a desirable region from mammalian genomes that are enriched in autonomously replicating sequence (ARS)-like sequences, elements that function as the origin of replication in yeast. Such sequences are not common in microbial genomes.

View Article and Find Full Text PDF

Despite the key role of the human ribosome in protein biosynthesis, little is known about the extent of sequence variation in ribosomal DNA (rDNA) or its pre-rRNA and rRNA products. We recovered ribosomal DNA segments from a single human chromosome 21 using transformation-associated recombination (TAR) cloning in yeast. Accurate long-read sequencing of 13 isolates covering ∼0.

View Article and Find Full Text PDF

Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed 'duplication blocks'.

View Article and Find Full Text PDF

Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome.

View Article and Find Full Text PDF

Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery.

View Article and Find Full Text PDF

We used whole-genome design and complete chemical synthesis to minimize the 1079-kilobase pair synthetic genome of Mycoplasma mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology combined with limited transposon mutagenesis data, failed to produce a viable cell.

View Article and Find Full Text PDF

Background: We have previously established technologies enabling us to engineer the Mycoplasma mycoides genome while cloned in the yeast Saccharomyces cerevisiae, followed by genome transplantation into Mycoplasma capricolum recipient cells to produce M. mycoides with an altered genome. To expand the toolbox for genomic modifications, we designed a strategy based on the Cre/loxP-based Recombinase-Mediated Cassette Exchange (RMCE) system for functional genomics analyses.

View Article and Find Full Text PDF

The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast.

View Article and Find Full Text PDF

Background: With the development of several new technologies using synthetic biology, it is possible to engineer genetically intractable organisms including Mycoplasma mycoides subspecies capri (Mmc), by cloning the intact bacterial genome in yeast, using the host yeast's genetic tools to modify the cloned genome, and subsequently transplanting the modified genome into a recipient cell to obtain mutant cells encoded by the modified genome. The recently described tandem repeat coupled with endonuclease cleavage (TREC) method has been successfully used to generate seamless deletions and point mutations in the mycoplasma genome using the yeast DNA repair machinery. But, attempts to knock-in genes in some cases have encountered a high background of transformation due to maintenance of unwanted circularization of the transforming DNA, which contains possible autonomously replicating sequence (ARS) activity.

View Article and Find Full Text PDF

Background: Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryotic DNA fragments was improved by addition of yeast replication origins every ~100 kb.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic information is crucially transmitted in cells, but mutations drive adaptation in evolution and disease, particularly in cancer where numerous genetic changes occur in diploid cells.
  • Research shows that diploid yeast cells subjected to certain mutagens accumulate thousands of mutations, significantly more than haploid cells, likely due to uneven distribution of mutation rates and the survival of hypersensitive cells.
  • The findings suggest that transient failures in mutation prevention processes can lead to bursts of mutability, offering insights into the rapid accumulation of mutations observed in both evolution and cancer development.
View Article and Find Full Text PDF

The ability to assemble large pieces of prokaryotic DNA by yeast recombination has great application in synthetic biology, but cloning large pieces of high G+C prokaryotic DNA in yeast can be challenging. Additional considerations in cloning large pieces of high G+C DNA in yeast may be related to toxic genes, to the size of the DNA, or to the absence of yeast origins of replication within the sequence. As an example of our ability to clone high G+C DNA in yeast, we chose to work with Synechococcus elongatus PCC 7942, which has an average G+C content of 55%.

View Article and Find Full Text PDF

The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP-A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance.

View Article and Find Full Text PDF

We describe here a method to rapidly convert any desirable DNA fragment, as small as 100 bp, into long tandem DNA arrays up to 140 kb in size that are inserted into a microbe vector. This method includes rolling-circle phi29 amplification (RCA) of the sequence in vitro and assembly of the RCA products in vivo by homologous recombination in the yeast Saccharomyces cerevisiae. The method was successfully used for a functional analysis of centromeric and pericentromeric repeats and construction of new vehicles for gene delivery to mammalian cells.

View Article and Find Full Text PDF

Circular yeast artificial chromosomes (YACs) provide significant advantages for cloning and manipulating large segments of genomic DNA in Saccharomyces cerevisiae. However, it has been difficult to exploit these advantages, because circular YACs are difficult to isolate and purify. Here we describe a method for purification of large circular YACs that is more reliable compared with previously described protocols.

View Article and Find Full Text PDF

We report the design, synthesis, and assembly of the 1.08-mega-base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M.

View Article and Find Full Text PDF

The complete synthetic Mycoplasma genitalium genome ( approximately 583 kb) has been assembled and cloned as a circular plasmid in the yeast Saccharomyces cerevisiae. Attempts to engineer the cloned genome by standard genetic methods involving the URA3/5-fluoroorotic acid (5-FOA) counter-selection have shown a high background of 5-FOA resistant clones derived from spontaneous deletions of the bacterial genome maintained in yeast. Here, we report a method that can seamlessly modify the bacterial genome in yeast with high efficiency.

View Article and Find Full Text PDF

Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules.

View Article and Find Full Text PDF

We recently reported the chemical synthesis, assembly, and cloning of a bacterial genome in yeast. To produce a synthetic cell, the genome must be transferred from yeast to a receptive cytoplasm. Here we describe methods to accomplish this.

View Article and Find Full Text PDF

The role of repetitive DNA sequences in pericentromeric regions with respect to kinetochore/heterochromatin structure and function is poorly understood. Here, we use a mouse erythroleukemia cell (MEL) system for studying how repetitive DNA assumes or is assembled into different chromatin structures. We show that human gamma-satellite DNA arrays allow a transcriptionally permissive chromatin conformation in an adjacent transgene and efficiently protect it from epigenetic silencing.

View Article and Find Full Text PDF

We have used a human artificial chromosome (HAC) to manipulate the epigenetic state of chromatin within an active kinetochore. The HAC has a dimeric alpha-satellite repeat containing one natural monomer with a CENP-B binding site, and one completely artificial synthetic monomer with the CENP-B box replaced by a tetracycline operator (tetO). This HAC exhibits normal kinetochore protein composition and mitotic stability.

View Article and Find Full Text PDF