We study the photodissociation induced by ultraviolet excitation of amide bonds in gas-phase protonated peptides. Jointly, mass spectrometry and cold ion spectroscopy provide evidence for a selective nonstatistical dissociation of specific peptide bonds in the spectral region of the formally forbidden n → π* transition of amide groups. Structural analysis reveals that the activation of this transition, peaked at 226 nm, originates from the nonplanar geometry of the bond.
View Article and Find Full Text PDFWe use cold ion spectroscopy and quantum-chemical computations to solve the structures of opioid peptides enkephalins in the gas phase. The derived structural parameters clearly correlate with the known pharmacological efficiency of the studied drugs, suggesting that gas-phase methods, perhaps, can be used for predicting the relative potency of ligand drugs that target the hydrophobic pockets of receptors.
View Article and Find Full Text PDFIdentification of isomeric amino acid residues in peptides and proteins is challenging but often highly desired in proteomics. One of the practically important cases that require isomeric assignments is that associated with single-nucleotide polymorphism substitutions of Met residues by Thr in cancer-related proteins. These genetically encoded substitutions can yet be confused with the chemical modifications, arising from protein alkylation by iodoacetamide, which is commonly used in the standard procedure of sample preparation for proteomic analysis.
View Article and Find Full Text PDFPeptide-bond VUV absorption is inherent to all proteins and peptides. Although widely exploited in top-down proteomics for photodissociation, this absorption has never been spectroscopically characterized in the gas phase. We have measured VUV/UV photofragmentation spectrum of a single peptide bond in a cryogenically cold protonated dipeptide.
View Article and Find Full Text PDF