Clin Infect Dis
August 2022
Background: Dopamine is one of the main mediators capable regulate the neuroimmune interaction and is involved in multiple sclerosis (MS) pathogenesis.
Objective: The aim of this study was to clarify the role of dopamine and its receptors in modulation of Th17-cells in MS.
Methods: 34 relapsing-remitting MS patients and 23 healthy subjects were examined.
Interactions between pattern-recognition receptors shape innate immune responses to pathogens. NOD1 and TLR4 are synergistically interacting receptors playing a pivotal role in the recognition of Gram-negative bacteria. However, mechanisms of their cooperation are poorly understood.
View Article and Find Full Text PDFGlatiramer acetate (GA) is approved for the treatment of multiple sclerosis (MS). However, the mechanism of action of GA in MS is still unclear. In particular, it is not known whether GA can modulate the pro-inflammatory Th17-type immune response in MS.
View Article and Find Full Text PDFUpon activation with pathogen-associated molecular patterns, metabolism of macrophages and dendritic cells is shifted from oxidative phosphorylation to aerobic glycolysis, which is considered important for proinflammatory cytokine production. Fragments of bacterial peptidoglycan (muramyl peptides) activate innate immune cells through nucleotide-binding oligomerization domain (NOD) 1 and/or NOD2 receptors. Here, we show that NOD1 and NOD2 agonists induce early glycolytic reprogramming of human monocyte-derived macrophages (MDM), which is similar to that induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide.
View Article and Find Full Text PDFNeuromediators may modulate neuroinflammation, particularly in multiple sclerosis (MS). We investigated the effects of dopamine (DA) on the pro-inflammatory Th17-branch of immunity in 43 patients with relapsing-remitting MS and 20 healthy subjects. Serum DA was lower in MS relapse, whereas percentages of blood CD4(+)CD26(+)CD161(+)CD196(+) Th17-cells and production of interleukin-17 (IL-17) and interferon-gamma by anti-CD3/anti-CD28-stimulated peripheral blood mononuclear cells (PBMC) were higher in MS relapse than in remission or healthy subjects.
View Article and Find Full Text PDFThe cationic antimicrobial peptide, LL37, forms electrostatic complexes with DNA (LL37-DNA), which are potent activators of circulating plasmacytoid predendritic cells (ppDCs) and monocytes. However, the effects of LL37-DNA on other immune cell types, such as NK cells, are poorly characterized. In this study, we show that complexes of human genomic DNA (hgDNA) or synthetic double-stranded oligodeoxynucleotides with LL37 strongly enhance natural cytotoxicity of human peripheral blood mononuclear cells (PBMCs) upon an overnight culture, whereas hgDNA alone has no effect, and LL37 alone is moderately active.
View Article and Find Full Text PDFNK cells lyse virus-infected cells by degranulation; however, alterations in NK cell degranulation in persistent viral infections have not been directly studied. Earlier reports have documented a decrease in NK activity in patients with frequently recurring herpes (FRH). We corroborate these findings by showing that the degranulation responses of blood NK cells from patients with FRH, both during relapse and during remission, are significantly lower than those in healthy donors.
View Article and Find Full Text PDFBacterial peptidoglycan and its muropeptide derivatives potently activate mammalian innate immune system and are promising immunomodulators and vaccine adjuvants. However, their effects on human antigen-presenting cells, such as dendritic cells (DCs) and Mphi, are not fully understood. Lysozyme treatment of PG from Salmonella typhi yielded three muropeptides, GlcNAc-MurNAc-L-Ala-D-isoGlu-meso-DAP (GM-3P), GlcNAc-MurNAc-L-Ala-D-isoGlu-meso-DAP-D-Ala (GM-4P), and a dimer (GM-4P)(2), in which two GM-4P monomers are linked through their peptidic moieties.
View Article and Find Full Text PDF