Publications by authors named "Vladimir Mulens-Arias"

Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma remains a highly aggressive and untreatable cancer. There is a need to develop a new PDAC-associated antigen-targeting drug delivery system to tackle this disease. We validated choosing ZIP4 as a putative target in PDAC theranostics.

View Article and Find Full Text PDF

Upon contact with biological fluids like serum, a protein corona (PC) complex forms on iron oxide nanoparticles (IONPs) in physiological environments and the proteins it contains influence how IONPs act in biological systems. Although the biological identity of PC-IONP complexes has often been studied and , there have been inconsistent results due to the differences in the animal of origin, the type of biological fluid, and the physicochemical properties of the IONPs. Here, we identified differences in the PC composition when it was derived from the sera of three species (bovine, murine, or human) and deposited on IONPs with similar core diameters but with different coatings [dimercaptosuccinic acid (DMSA), dextran (DEX), or 3-aminopropyl triethoxysilane (APS)], and we assessed how these differences influenced their effects on macrophages.

View Article and Find Full Text PDF

Background: The surface coating of iron oxide magnetic nanoparticle (MNPs) drives their intracellular trafficking and degradation in endolysosomes, as well as dictating other cellular outcomes. As such, we assessed whether MNP coatings might influence their biodistribution, their accumulation in certain organs and their turnover therein, processes that must be understood in vivo to optimize the design of nanoformulations for specific therapeutic/diagnostic needs.

Results: In this study, three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA).

View Article and Find Full Text PDF

Nanomedicines based on inorganic nanoparticles have grown in the last decades due to the nanosystems' versatility in the coating, tuneability, and physical and chemical properties. Nonetheless, concerns have been raised regarding the immunotropic profile of nanoparticles and how metallic nanoparticles affect the immune system. Cationic polymer nanoparticles are widely used for cell transfection and proved to exert an adjuvant immunomodulatory effect that improves the efficiency of conventional vaccines against infection or cancer.

View Article and Find Full Text PDF

Background: Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic.

Results: In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies.

View Article and Find Full Text PDF

We report the synthesis of plasmonic nanocapsules and the cellular responses they induce in 3D melanoma models for their perspective use as a photothermal therapeutic agent. The wall of the nanocapsules is composed of polyelectrolytes. The inner part is functionalized with discrete gold nanoislands.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) are potential theranostic tools that are biodegraded through different endocytic pathways. However, little is known about the endolysosomal network through which MNPs transit and the influence of the surface coating in this process. Here, we studied the intracellular transit of two MNPs with identical iron oxide core size but with two distinct coatings: 3-aminopropyl-trietoxysilane (APS) and dimercaptosuccinic acid (DMSA).

View Article and Find Full Text PDF

The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has enhanced the interest in studying them as theranostic agents over recent years. As IONPs begin to be used for different biomedical applications, it is important to know how they affect the immune system and its different cell types, especially their interaction with the macrophages that are involved in their clearance. How immune cells respond to therapeutic interventions can condition the systemic and local tissue response, and hence, the final therapeutic outcome.

View Article and Find Full Text PDF

Peritoneal metastasis (PM) is considered as the terminal stage of metastatic colon cancer, with still poor median survival rate even with the best recent chemotherapy treatment. The current PM treatment combines cytoreductive surgery, which consists of resecting all macroscopic tumors, with hyperthermic intraperitoneal chemotherapy (HIPEC), which uses mild hyperthermia to boost the diffusion and cytotoxic effect of chemotherapeutic drugs. As HIPEC is performed a closed circulation of a hot liquid containing chemotherapy, it induces uncontrolled heating and drug distribution in the whole peritoneal cavity with important off-site toxicity and a high level of morbidity.

View Article and Find Full Text PDF

Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells.

View Article and Find Full Text PDF

Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term.

View Article and Find Full Text PDF

Endothelial cells are essential to tumor vascularization and impairing their activity can potentially limit tumor growth. Since polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles (SPIONs) are bioactive nanosystems that modulate inflammatory macrophage responses and limit tumor cell invasion, we evaluated their effects on endothelial cell angiogenesis. PEI-SPION triggered proinflammatory gene profiles in a murine endothelial cell line and in primary human umbilical cord vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Gold nanoparticles have been thoroughly used in designing thermal ablative therapies and in photoacoustic imaging in cancer treatment owing to their unique and tunable plasmonic properties. While the plasmonic properties highly depend on the size and structure, controllable aggregation of gold nanoparticles can trigger a plasmonic coupling of adjacent electronic clouds, henceforth leading to an increase of light absorption within the near-infrared (NIR) window. Polymer-engraftment of gold nanoparticles has been investigated to achieve the plasmonic coupling phenomenon, but complex chemical steps are often needed to accomplish a biomedically relevant product.

View Article and Find Full Text PDF

Gold nanoparticles (AuNP) have been thoroughly studied as multifunctional theranosis agents for cell imaging and cancer therapy as well as sensors due to their tunable physical and chemical properties. Although AuNP have proved to be safe in a wide concentration range, yet other important biological effects can arise in the sublethal window of treatment. This is especially pivotal to understand how AuNP can affect cell biology when labeling steps are needed for cell tracking in vivo, as nanoparticle loading can affect cell migratory/invasion ability, a function mediated by filamentous actin-rich nanometric structures collectively called adhesomes.

View Article and Find Full Text PDF

Activation of NK cells depends on a balance between activating and inhibitory signals. Class Ia PI3K are heterodimeric proteins with a catalytic and a regulatory subunit and have a central role in cell signaling by associating with tyrosine kinase receptors to trigger signaling cascades. The regulatory p85 subunit participates in signaling through NKG2D, one of the main activating receptors on NK cells, via its interaction with the adaptor protein DAP10.

View Article and Find Full Text PDF

Unlabelled: Superparamagnetic iron oxide nanoparticles (SPIONs) have shown promise as contrast agents and nanocarriers for drug delivery. Their impact on M2-polarised macrophages has nonetheless not been well studied. Here we explored the effects of SPIONs coated with dimercaptosuccinic acid, aminopropyl silane or aminodextran in two M2 macrophage models (murine primary IL-4-activated bone marrow-derived macrophages and human M2-like differentiated THP-1 cells).

View Article and Find Full Text PDF

Due to its aggressive behavior, pancreatic cancer is one of the principal causes of cancer-related deaths. The highly metastatic potential of pancreatic tumor cells demands the development of more effective anti-metastatic approaches for this disease. Although polyethylenimine-coated superparamagnetic iron oxide nanoparticles (PEI-coated SPIONs) have been studied for their utility as transfection agents, little is known of their effect on tumor cell biology.

View Article and Find Full Text PDF

Polyethylenimine (PEI) is widely used as transfection agent in preclinical studies, both in vitro and in vivo. Due to their unique chemical and physical properties, SPIONs (superparamagnetic iron oxide nanoparticles) have been thoroughly studied as nanocarriers. PEI appears to activate different immune cells to an inflammatory response (M1/TH1), whereas the SPION-induced response seems to be context-dependent; the immunogenicity of the combination of these components has not been studied.

View Article and Find Full Text PDF