A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.
View Article and Find Full Text PDFUsing a cavity mode model we study numerically the impact of bandwidth and spectral response profile of fibre Bragg gratings on four-wave-mixing-induced spectral broadening of radiation generated in 6 km and 22 km SMF-based Raman fibre lasers.
View Article and Find Full Text PDFA series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5 x 10(-3) to 10(-2), leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.
View Article and Find Full Text PDFA waveguide-saturable absorber with low propagation loss is fabricated by femtosecond pulses in YAG:Cr(4+) crystal. Q-switch operation of a Yb fiber laser with the new saturable absorber having absorption saturation parameters similar to the bulk YAG:Cr(4+) crystal is demonstrated.
View Article and Find Full Text PDFWe present a diffractive phase variable attenuator for femtosecond laser radiation control. It allows the control of beam power up to 0.75.
View Article and Find Full Text PDFWe apply well known nonlinear diffraction theory governing focusing of a powerful light beam of arbitrary shape in medium with Kerr nonlinearity to the analysis of femtosecond (fs) laser processing of dielectric in sub-critical (input power less than the critical power of self-focusing) regime. Simple analytical expressions are derived for the input beam power and spatial focusing parameter (numerical aperture) that are required for achieving an inscription threshold. Application of non-Gaussian laser beams for better controlled fs inscription at higher powers is also discussed.
View Article and Find Full Text PDF