Publications by authors named "Vladimir Mekler"

serovar Newport bacteriophage 7-11 shares 41 homologous ORFs with phage phiEco32, and both phages encode a protein similar to bacterial RNA polymerase promoter specificity σ subunit. Here, we investigated the temporal pattern of 7-11 gene expression during infection and compared it to the previously determined transcription strategy of phiEco32. Using primer extension and in vitro transcription assays, we identified eight promoters recognized by host RNA polymerase holoenzyme containing 7-11 σ subunit SaPh711_gp47.

View Article and Find Full Text PDF

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a).

View Article and Find Full Text PDF

The bacteriophage T5 has three temporal classes of genes (pre-early, early, and late). All three classes are transcribed by host RNA polymerase (RNAP) containing the σ promoter specificity subunit. Molecular mechanisms responsible for the switching of viral transcription from one class to another remain unknown.

View Article and Find Full Text PDF

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence.

View Article and Find Full Text PDF

CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop.

View Article and Find Full Text PDF

Target binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors.

View Article and Find Full Text PDF

RNA polymerase (RNAP) is a major target of gene regulation. Thermus thermophilus bacteriophage P23-45 encodes two RNAP binding proteins, gp39 and gp76, which shut off host gene transcription while allowing orderly transcription of phage genes. We previously reported the structure of the T.

View Article and Find Full Text PDF

In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5'-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site.

View Article and Find Full Text PDF

The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA.

View Article and Find Full Text PDF

The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits.

View Article and Find Full Text PDF

CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR-Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs.

View Article and Find Full Text PDF

The molecular details of formation of transcription initiation complex upon the interaction of bacterial RNA polymerase (RNAP) with promoters are not completely understood. One way to address this problem is to understand how RNAP interacts with different parts of promoter DNA. A recently developed fluorometric RNAP molecular beacon assay allows one to monitor the RNAP interactions with various unlabeled DNA probes and quantitatively characterize partial RNAP-promoter interactions.

View Article and Find Full Text PDF

RNA polymerase-promoter interactions that keep the transcription initiation complex together are complex and multipartite, and formation of the RNA polymerase-promoter complex proceeds through multiple intermediates. Short promoter fragments can be used as a tool to dissect RNA polymerase-promoter interactions and to pinpoint elements responsible for specific properties of the entire promoter complex. A recently developed fluorometric molecular beacon assay allows one to monitor the enzyme interactions with various DNA probes and quantitatively characterize partial RNA polymerase-promoter interactions.

View Article and Find Full Text PDF

Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich.

View Article and Find Full Text PDF

Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site.

View Article and Find Full Text PDF

Many bacteriophages produce small proteins that specifically interfere with the bacterial host transcription machinery and thus contribute to the acquisition of the bacterial cell by the bacteriophage. We recently described how a small protein, called P7, produced by the Xp10 bacteriophage inhibits bacterial transcription initiation by causing the dissociation of the promoter specificity sigma factor subunit from the host RNA polymerase holoenzyme. In this addendum to the original publication, we present the highlights of that research.

View Article and Find Full Text PDF

Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10.

View Article and Find Full Text PDF

RNA polymerase (RNAP) melts promoter DNA to form transcription-competent open promoter complex (RPo). Interaction of the RNAP σ subunit with non-template strand bases of a conserved -10 element (consensus sequence T-12A-11T-10A-9A-8T-7) is an important source of energy-driving localized promoter melting. Here, we used an RNAP molecular beacon assay to investigate interdependencies of RNAP interactions with -10 element nucleotides.

View Article and Find Full Text PDF

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C.

View Article and Find Full Text PDF

The T7 phage-encoded small protein Gp2 is a non-DNA-binding transcription factor that interacts with the jaw domain of the Escherichia coli (Ec) RNA polymerase (RNAp) β' subunit and inhibits transcriptionally proficient promoter-complex (RPo) formation. Here, we describe the high-resolution solution structure of the Gp2-Ec β' jaw domain complex and show that Gp2 and DNA compete for binding to the β' jaw domain. We reveal that efficient inhibition of RPo formation by Gp2 requires the amino-terminal σ(70) domain region 1.

View Article and Find Full Text PDF

Escherichia coli T7 bacteriophage gp2 protein is a potent inhibitor of host RNA polymerase (RNAP). gp2 inhibits formation of open promoter complex by binding to the β' jaw, an RNAP domain that interacts with downstream promoter DNA. Here, we used an engineered promoter with an optimized sequence to obtain and characterize a specific promoter complex containing RNAP and gp2.

View Article and Find Full Text PDF

Nucleation of promoter melting in bacteria is coupled with RNA polymerase (RNAP) binding to a conserved -10 promoter element located at the upstream edge of the transcription bubble. The mechanism of downstream propagation of the transcription bubble to include the transcription start site is unclear. Here we introduce new model downstream fork junction promoter fragments that specifically bind RNAP and mimic the downstream segment of promoter complexes.

View Article and Find Full Text PDF

Promoter recognition by RNA polymerase is a key point in gene expression and a target of regulation. Bacterial RNA polymerase binds promoters in the form of the holoenzyme, with the σ specificity subunit being primarily responsible for promoter recognition. Free σ, however, does not recognize promoter DNA, and it has been proposed that the intrinsic DNA binding ability is masked in free σ but becomes unmasked in the holoenzyme.

View Article and Find Full Text PDF

Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking - involving rapid-quench-flow mixing and pulsed-laser irradiation - permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes.

View Article and Find Full Text PDF

Rifamycin antibacterial agents inhibit bacterial RNA polymerase (RNAP) by binding to a site adjacent to the RNAP active center and preventing synthesis of RNA products >2-3 nt in length. Recently, Artsimovitch et al. [(2005) Cell 122:351-363] proposed that rifamycins function by allosteric modulation of binding of Mg(2+) to the RNAP active center and presented three lines of biochemical evidence consistent with this proposal.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session66u64pcce5di0khj6ej5i53tnlh699uo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once