Publications by authors named "Vladimir Maslivetc"

Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells.

View Article and Find Full Text PDF

Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety.

View Article and Find Full Text PDF

Recent studies have demonstrated the ability of human prostaglandin-endoperoxide synthase 2 (COX-2) to guide the formation of fluorescent pyrroles through the Paal-Knorr reaction resulting in the discovery of a central motif. This initial discovery prompted further exploration of this motif for the design of COX-2 inhibitors through the modifications of the substituents on the pyrrole core. This effort led to the discovery of a set of pyrroles whose activity was comparable to Celecoxib, an orally prescribed nonsteroidal anti-inflammatory COX-2 inhibitor.

View Article and Find Full Text PDF

The tandem addition of an amine and a thiol to an aromatic dialdehyde engages a selective three-component assembly of a fluorescent isoindole. While an attractive approach for diversity-based fluorophore discovery, isoindoles are typically unstable and present considerable challenges for their practical utility. We found that introduction of electron-withdrawing substituents into the dialdehyde component affords stable isoindole products in one step with acceptable yields and high purity.

View Article and Find Full Text PDF

In a search of small molecules active against apoptosis-resistant cancer cells, including glioma, melanoma, and non-small cell lung cancer, we previously prepared α,β- and γ,δ-unsaturated ester analogues of polygodial and ophiobolin A, compounds capable of pyrrolylation of primary amines and demonstrating double-digit micromolar antiproliferative potencies in cancer cells. In the current work, we synthesized dimeric and trimeric variants of such compounds in an effort to discover compounds that could crosslink biological primary amine containing targets. We showed that such compounds retain the pyrrolylation ability and possess enhanced single-digit micromolar potencies toward apoptosis-resistant cancer cells.

View Article and Find Full Text PDF

Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery.

View Article and Find Full Text PDF

We discovered a reaction of nitroalkanes with 2-hydrazinylquinolines, 2-hydrazinylpyridines and bis-2,4-dihydrazinylpyrimidines in polyphosphoric acid (PPA) affording 1,2,4-triazolo[4,3-a]quinolines, 1,2,4-triazolo[4,3-a]pyridines and bis[1,2,4]triazolo[4,3-a:4',3'-c]pyrimidines, respectively. The reaction expands the scope of heterocyclic annulations involving phosphorylated nitronates, believed to be the electrophilic intermediates formed from nitroalkanes in PPA. Several of the synthesized triazoles showed promising anticancer activity by inducing differentiation in neuroblastoma cancer cells.

View Article and Find Full Text PDF

It has become increasingly apparent that high-diversity chemical reactions play a significant role in the discovery of bioactive small molecules. Here, we describe an expanse of this paradigm, combining a 'target-guided synthesis' concept with Paal-Knorr chemistry applied to the preparation of fluorescent ligands for human prostaglandin-endoperoxide synthase (COX-2).

View Article and Find Full Text PDF

A strain-release-driven, cation-templated nucleophilic 7- and 8- exo-trig-cyclization of tethered Boc-protected amines to cyclopropenes is described. The featured reaction proceeds in diastereo- and regioselective fashion and allows for preparation of the corresponding 2,5-diazabicyclo[5.1.

View Article and Find Full Text PDF

A strain-release-driven, cation-templated intramolecular nucleophilic addition of tethered alkoxides to prochiral cyclopropenes is described. Employment of chiral β- and γ-amino alkoxides allowed for highly diastereoselective assembly of a small series of enantiopure cyclopropane-fused oxazepanones. It was shown that the chiral center at C-4 plays a crucial role in controlling desymmetrization of the cyclopropenyl moiety, instigated by a profound potassium-templated effect.

View Article and Find Full Text PDF

An unusual reaction is described, involving a formal intramolecular nucleophilic substitution of bromocyclopropanes with nitrogen ylides generated in situ from N-benzyl carboxamides. It is shown that this reaction involves cyclopropene intermediates and allows for the facile and expeditious preparation of 3-azabicyclo[3.1.

View Article and Find Full Text PDF

A one-pot synthesis of various GABA amides has been demostrated, employing the nucleophilic addition of primary and secondary amines across the double bond of cyclopropene-3-carboxamides, followed by ring-opening of the resulting donor-acceptor cyclopropanes and subsequent in situ reduction of enamine (imine) intermediates.

View Article and Find Full Text PDF