Publications by authors named "Vladimir M Krasnov"

The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex-the smallest quantized object in superconductors-can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg-Landau equations.

View Article and Find Full Text PDF

The utilization of Josephson vortices as information carriers in superconducting digital electronics is hindered by the lack of reliable displacement and localization mechanisms. In this Letter, we experimentally investigate planar Nb junctions with an intrinsic phase shift and nonreciprocity induced by trapped Abrikosov vortices. We demonstrate that the entrance of a single Josephson vortex into such junctions triggers the switching between metastable ±π semifluxon states.

View Article and Find Full Text PDF

The lack of dense random access memory is one of the main bottlenecks for the creation of a digital superconducting computer. In this work we study experimentally vortex-based superconducting memory cells. Three main results are obtained.

View Article and Find Full Text PDF

Optimization of Josephson oscillators requires a quantitative understanding of their microwave properties. A Josephson junction has a geometry similar to a microstrip patch antenna. However, it is biased by a dc current distributed over the whole area of the junction.

View Article and Find Full Text PDF

Josephson junctions can be used as sources of microwave radiation. However, synchronization of many junctions is required for achieving a coherent amplification of the emitted power. In this work we present an experimental study of large arrays containing up to one thousand Nb/Nb Si /Nb junctions.

View Article and Find Full Text PDF

We analyze experimentally and theoretically mutual phase locking and electromagnetic interaction between two linear arrays with a large number of Josephson junctions. Arrays with different separation, either on the same chip or on two separate substrates are studied. We observe a large coherent gain, up to a factor of three, of emitted power from two simultaneously biased arrays, compared to the sum of powers from two individually biased arrays.

View Article and Find Full Text PDF

Diode is one of the basic electronic components. It has a nonreciprocal current response, associated with a broken space/time reversal symmetry. Here we demonstrate prototypes of superconducting diodes operational at zero magnetic field.

View Article and Find Full Text PDF

Impedance matching and heat management are important factors influencing the performance of terahertz sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor BiSrCaCuO. Two types of devices are considered containing either a conventional large single crystal or a whisker.

View Article and Find Full Text PDF

Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis.

View Article and Find Full Text PDF

Operation of Josephson electronics usually requires determination of the Josephson critical current Ic, which is affected both by fluctuations and measurement noise. Lock-in measurements allow obviation of 1/f noise, and therefore, provide a major advantage in terms of noise and accuracy with respect to conventional dc measurements. In this work we show both theoretically and experimentally that the Ic can be accurately extracted using first and third harmonic lock-in measurements of junction resistance.

View Article and Find Full Text PDF

Phase shifter is one of the key elements of quantum electronics. In order to facilitate operation and avoid decoherence, it has to be reconfigurable, persistent, and nondissipative. In this work, we demonstrate prototypes of such devices in which a Josephson phase shift is generated by coreless superconducting vortices.

View Article and Find Full Text PDF

Josephson vortices play an essential role in superconducting quantum electronics devices. Often seen as purely conceptual topological objects, 2π-phase singularities, their observation and manipulation are challenging. Here we show that in Superconductor-Normal metal-Superconductor lateral junctions Josephson vortices have a peculiar magnetic fingerprint that we reveal in Magnetic Force Microscopy (MFM) experiments.

View Article and Find Full Text PDF

Understanding the pairing mechanism that gives rise to high-temperature superconductivity is one of the longest-standing problems of condensed-matter physics. Almost three decades after its discovery, even the question of whether or not phonons are involved remains a point of contention to some. Here we describe a technique for determining the spectra of bosons generated during the formation of Cooper pairs on recombination of hot electrons as they tunnel between the layers of a cuprate superconductor.

View Article and Find Full Text PDF