Metaphors reforging science and art may help us to find a way to upgrade democracy so that it makes decisions with a positive impact for the next generations. [Image: see text]
View Article and Find Full Text PDFSince Coronavirus disease 2019 (COVID-19) still presents a considerable threat, it is beneficial to provide therapeutic supplements against it. In this respect, glycoprotein lactoferrin (LF) and lactoferricin (LFC), a natural bioactive peptide yielded upon digestion from the N-terminus of LF, are of utmost interest, since both have been shown to reduce infections of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, in particular via blockade of the virus priming and binding. Here, we, by means of biochemical and biophysical methods, reveal that LF directly binds to the S-protein of SARS-CoV-2.
View Article and Find Full Text PDFModern science has brought undisputable welfare to mankind, but also harmful consequences, and it has to face great challenges to find a way out of the current global crisis. [Image: see text]
View Article and Find Full Text PDFScience gifts us the tools to solve the pressing humanitarian and ecological challenges of our time. But ignorance and selfishness prevent us from using science to the best effect. [Image: see text]
View Article and Find Full Text PDFLactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it.
View Article and Find Full Text PDFIn addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19.
View Article and Find Full Text PDFFractalkine (CX3CL1) is a unique chemokine that functions as a chemoattractant for effector cytotoxic lymphocytes and macrophages expressing fractalkine receptor CX3CR1. CX3CL1 exists in two forms-a soluble and a membrane-bound form. The soluble CX3CL1 is released from cell membranes by proteolysis by the TNF-α-converting enzyme/disintegrin-like metalloproteinase 17 (TACE/ADAM17) and ADAM10.
View Article and Find Full Text PDFUpon generation of monoclonal antibodies to the T cell antigen receptor/CD3 (TCR/CD3) complex, we isolated mAb MT3, whose reactivity correlates inversely with the production of IFN-γ by human peripheral blood T lymphocytes. Using eukaryotic expression cloning, we identified the MT3 antigen as myelin-and-lymphocyte (MAL) protein. Flow cytometry analysis demonstrates high surface expression of MAL on all naïve CD4 T cells whereas MAL expression is diminished on central memory- and almost lost on effector memory T cells.
View Article and Find Full Text PDFThe plasminogen system is harnessed in a wide variety of physiological processes, such as fibrinolysis, cell migration, or efferocytosis; and accordingly, it is essential upon inflammation, tissue remodeling, wound healing, and for homeostatic maintenance in general. Previously, we identified a plasminogen receptor in the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222). Here, we demonstrate by means of genetic knockdown, knockout, and rescue approaches combined with functional studies that M6P/IGF2R is up-regulated on the surface of macrophages, recognizes plasminogen exposed on the surface of apoptotic cells, and mediates plasminogen-induced efferocytosis.
View Article and Find Full Text PDFIf misregulated, macrophage (Mϕ)-T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype.
View Article and Find Full Text PDFThe plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes ( tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species ( or ) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers.
View Article and Find Full Text PDFThe plasminogen activation system, i.e., the fibrinolytic system, is one of the major plasma proteolytic pathways.
View Article and Find Full Text PDFProperly balanced cellular responses require both the mutual interactions of soluble factors with cell surface receptors and the crosstalk of intracellular molecules. In particular, immune cells exposed unceasingly to an array of positive and negative stimuli must distinguish between what has to be tolerated and attacked. Protein trafficking is one of crucial pathways involved in this labour.
View Article and Find Full Text PDFFolate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) β, a GPI-anchored protein belonging to the folate receptor family. As FRβ shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRβ, it represents a promising target for future therapeutic strategies.
View Article and Find Full Text PDFThe Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a progressive decline in lung function which can be attributed to excessive scarring, inflammation and airway remodelling. Mannose-6-phosphate (M6P) is a strong inhibitor of fibrosis and its administration has been associated with beneficial effects in tendon repair surgery as well as nerve repair after injury. Given this promising therapeutic approach we developed an improved analogue of M6P, namely PXS64, and explored its anti-fibrotic effects in vitro.
View Article and Find Full Text PDFThe spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade.
View Article and Find Full Text PDFThe plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation.
View Article and Find Full Text PDFRationale: The urokinase plasminogen activator (uPA) system is among the most crucial pericellular proteolytic systems associated with the processes of angiogenesis. We previously identified an important regulator of the uPA system in the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R).
Objective: Here, we wanted to clarify whether and how did the soluble form of M6P/IGF2R (sM6P/IGF2R) contribute to modulation of the uPA system.
The buildup of TCR signaling microclusters containing adaptor proteins and kinases is prerequisite for T cell activation. One hallmark in this process is association of the TCR with lipid raft microdomains enriched in GPI-proteins that have potential to act as accessory molecules for TCR signaling. In this study, we show that GPI-anchored CD48 but not CD59 was recruited to the immobilized TCR/CD3 complex upon activation of T cells.
View Article and Find Full Text PDFThe mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) mediates biosynthetic sorting and endocytosis of various factors that impinge on the proliferation, migration and invasiveness of tumour cells. The gene encoding M6P/IGF2R is frequently lost or mutated in a wide range of malignant tumours including squamous cell carcinomas. We have previously shown that M6P/IGF2R-deficient SCC-VII murine squamous cell carcinoma cells secrete large amounts of pro-invasive lysosomal proteinases.
View Article and Find Full Text PDFThe multifunctional mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a tumor suppressor. We report here that RNA interference with M6P/IGF2R expression in urokinase-type plasminogen activator (uPA)/urokinase-type plasminogen activator receptor (uPAR) expressing human cancer and endothelial cells resulted in increased pericellular plasminogen activation, cell adhesion, and higher invasive potential through matrigel. M6P/IGF2R silencing led also to the cell surface accumulation of urokinase and plasminogen and enhanced expression of alphaV integrins.
View Article and Find Full Text PDFThe activity of the lymphocyte-function associated antigen 1 (LFA-1; CD11a/CD18) must be tightly controlled during the onset of cellular immunity. It is well known that the sialoglycoprotein CD43 can influence LFA-1-mediated cell adhesion in an either anti- or pro-adhesive manner through mechanisms not well understood. By using a yeast-2-hybrid screen and co-immunoprecipitation we identified physical association of CD43 with two novel partners, LFA-1 itself and the Ig-family member CD147 (EMMPRIN, basigin), and characterized how these interactions are involved in LFA-1-mediated cell adhesion.
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-beta), a key modulator of endothelial cell apoptosis, must be activated from the latent form (LTGF-beta) to induce biological responses. In the present study, we report activation of TGF-beta by functional and physical co-operation of the mannose-6-phosphate/insulin-like-growth-factor-II receptor (CD222) and the urokinase-type plasminogen activator receptor (CD87). We show that endothelial cells express CD222 and CD87 in a membrane complex and demonstrate that the association of these two receptors is essential for the release of active TGF-beta in the transduced mouse fibroblast used as model cells.
View Article and Find Full Text PDFIn order to identify new molecules involved in regulation of T cell proliferation, we generated various mAb by immunization of mice with the T cell line Molt4. We found one mAb (termed P-3E10) that down-regulated the in vitro T cell proliferation induced by CD3-specific OKT3 mAb. The P-3E10 mAb was also able to inhibit IFN-gamma, IL-2, IL-4 and IL-10 production of OKT3-activated T cells.
View Article and Find Full Text PDF