Publications by authors named "Vladimir Ladziata"

Inhibitors of Factor VIIa (FVIIa), a serine protease in the clotting cascade, have shown strong antithrombotic efficacy in preclinical thrombosis models with minimal bleeding liabilities. Discovery of potent, orally active FVIIa inhibitors has been largely unsuccessful because known chemotypes have required a highly basic group in the S1 binding pocket for high affinity. A recently reported fragment screening effort resulted in the discovery of a neutral heterocycle, 7-chloro-3,4-dihydroisoquinolin-1(2)-one, that binds in the S1 pocket of FVIIa and can be incorporated into a phenylglycine FVIIa inhibitor.

View Article and Find Full Text PDF

Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.

View Article and Find Full Text PDF

Inhibitors of the tissue factor (TF)/factor VIIa complex (TF-FVIIa) are promising novel anticoagulants which show excellent efficacy and minimal bleeding in preclinical models. Starting with an aminoisoquinoline P1-based macrocyclic inhibitor, optimization of the P' groups led to a series of highly potent and selective TF-FVIIa inhibitors which displayed poor permeability. Fluorination of the aminoisoquinoline reduced the basicity of the P1 group and significantly improved permeability.

View Article and Find Full Text PDF

Incorporation of a methyl group onto a macrocyclic FVIIa inhibitor improves potency 10-fold but is accompanied by atropisomerism due to restricted bond rotation in the macrocyclic structure, as demonstrated by NMR studies. We designed a conformational constraint favoring the desired atropisomer in which this methyl group interacts with the S2 pocket of FVIIa. A macrocyclic inhibitor incorporating this constraint was prepared and demonstrated by NMR to reside predominantly in the desired conformation.

View Article and Find Full Text PDF