Publications by authors named "Vladimir Kreslavski"

The effects of silver nanoparticles (AgNPs), both alone and in combination with mineral nutrients, on the growth and photosynthesis of Solanum lycopersicum plants during ontogeny were studied. The experiment involved weekly applications of 10 μmol of AgNPs for 15 weeks in a greenhouse over a summer period. A comprehensive characterization of the AgNPs was performed via TEM, ESI/EELS, and zeta potential measurements before and throughout the experiment.

View Article and Find Full Text PDF

This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair.

View Article and Find Full Text PDF

The increase in industrialization has led to an exponential increase in heavy metal (HM) soil contamination, which poses a serious threat to public health and ecosystem stability. This review emphasizes the urgent need to develop innovative technologies for the environmental remediation of intensive anthropogenic pollution. Phytoremediation is a sustainable and cost-effective approach for the detoxification of contaminated soils using various plant species.

View Article and Find Full Text PDF

The effects of high-intensity blue light (HIBL, 500/1000 µmol ms, 450 nm) on mutants with high pigment () and low pigment ( levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The mutant quickly adapted to 500 µmol ms HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (, , , ) and PSII proteins along with an increase in nonenzymatic antioxidant activity.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how different types of light (white, red, and far-red) affect the growth of two-year-old Scots pine plants under greenhouse conditions.
  • Red light (RL) and combined red and far-red light (RL+FRL) promoted increases in xylem cells, transpiration rates, and the expression of genes linked to plant growth hormones like auxins and brassinosteroids.
  • Although increased light intensity boosted the levels of certain secondary metabolites, such as proanthocyanidins and catechins, the combined light treatments mainly enhanced physical development instead of enhancing photosynthesis or metabolite accumulation.
View Article and Find Full Text PDF

The effects of high-intensity light on the pigment content, photosynthetic rate, and fluorescence parameters of photosystem II in high-pigment tomato mutants ( 3005) and low-pigment mutants ( 3617) were investigated. This study also evaluated the dry weight percentage of low molecular weight antioxidant capacity, expression patterns of some photoreceptor-regulated genes, and structural aspects of leaf mesophyll cells. The 3005 mutant displayed increased levels of photosynthetic pigments and anthocyanins, whereas the 3617 mutant demonstrated a heightened content of ultraviolet-absorbing pigments.

View Article and Find Full Text PDF

Marchantia polymorpha is a convenient model for studying light of different spectral compositions on various physiological and biochemical processes because its photoreceptor system is vastly simplified. The influence of red light (RL, 660 nm), far-red light (FRL, 730 nm), blue light (BL, 450 nm), and green light (GL, 525 nm) compared to white light (high-pressure sodium light (HPSL), white LEDs (WL 450 + 580 nm) and white fluorescent light (WFL) on photosynthetic and transpiration rates, photosystem II (PSII) activity, photomorphogenesis, and the expression of light and hormonal signaling genes was studied. The ultrastructure of the chloroplasts in different tissues of the gametophyte M.

View Article and Find Full Text PDF

UV-B causes both damage to the photosynthetic apparatus (PA) and the activation of specific mechanisms that protect the PA from excess energy and trigger a cascade of regulatory interactions with different photoreceptors, including phytochromes (PHYs) and cryptochromes (CRYs). However, the role of photoreceptors in plants' responses to UV-B radiation remains undiscovered. This study explores some of these responses using tomato photoreceptor mutants (, , , ).

View Article and Find Full Text PDF

Soil salinisation is one of the main abiotic stresses decreasing crop productivity. Here, we show that the plant treatment with iron oxide (Fe3 O4 ) nanoparticles (NPs) may be a promising solution for reducing the negative impact of soil salinity on plant performance. For this purpose, effects of the NPs on growth, photosynthesis, pro-/antioxidant, redox balance and the content of mineral elements in 19-day-old wheat (Triticum aestivum ) plants under soil salinity were studied.

View Article and Find Full Text PDF

Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL]Br complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined.

View Article and Find Full Text PDF

Biomineralization in plant roots refers to the process of cell-induced self-assembly to form nanostructures on the root surface. Silicon (Si) is the second most abundant element in soils, and beneficial to plant growth. Meanwhile, silicon is shown to participate in the process of biomineralization, which is useful for improving mechanical strength and alleviating biotic and abiotic stress, for example silicic acid polymerizes to form amorphous silica (SiO-nHO) in the process of growing to resist fungi and environmental stress.

View Article and Find Full Text PDF

The effect of the light of different spectral compositions, white fluorescent light (WFL), red light (RL, 660 nm), blue light (BL, 450 nm), green light (GL, 525 nm), and white LED light (WL, 450 + 580 nm), on the physiological parameters of 3005 (defective for a gene) and 4012 ; 3538 ; 0279 (defective for a gene) photomorphogenetic mutants was studied. The parameters of the primary photochemical processes of photosynthesis, photosynthetic and transpiration rates, the antioxidant capacity of low-molecular weight antioxidants, the content of the total phenolic compounds, including flavonoids, and the expression of the genes involved in light signaling and biosynthesis of secondary metabolites were determined. Under BL, the 3005 mutant showed the highest nonenzymatic antioxidant activity, which occurred to a greater extent due to the increase in flavonoid content.

View Article and Find Full Text PDF

Environmental factors, such as light of different spectral compositions and temperature, can change the level of activated photoreceptors which, in turn, can affect the biosynthesis of secondary metabolites in the cells of green fruit. By briefly irradiating the harvested fruit of L. hot peppers with red light (RL, maximum 660 nm) and far-red light (FRL, maximum 730 nm) and by keeping them at a low temperature, we attempted to determine whether the state of phytochromes in fruit affects the biosynthesis of secondary metabolites.

View Article and Find Full Text PDF

The effects of heating (40 °C, 1 and 2 h) in dark and light conditions on the photosynthetic activity (photosynthesis rate and photosystem II activity), content of photosynthetic pigments, activity of antioxidant enzymes, content of thiobarbituric acid reactive substances (TBARs), and expression of a number of key genes of antioxidant enzymes and photosynthetic proteins were studied. It was shown that, in darkness, heating reduced CO gas exchange, photosystem II activity, and the content of photosynthetic pigments to a greater extent in the mutant than in the wild type (WT). The content of TBARs increased only in the mutant, which is apparently associated with a sharp increase in the total peroxidase activity in WT and its decrease in the mutant, which is consistent with a noticeable decrease in photosynthetic activity and the content of photosynthetic pigments in the mutant.

View Article and Find Full Text PDF

The photoreceptors of red light (phytochromes) and blue light (cryptochromes) impact plant growth and metabolism. However, their action has been barely studied, especially in coniferous plants. Therefore, the influence of blue (maximum 450 nm), red (maximum 660 nm), white light (maxima 450 nm + 575 nm), far-red light (maximum 730 nm), white fluorescent light and dark on seed germination, growth, chlorophyll and carotenoid contents, as well as the transcript levels of genes involved in reception, photosynthesis, light and hormonal signaling of Scots pine plantlets, was investigated.

View Article and Find Full Text PDF

The effects of the quality of light on the content of phytochrome interacting factors (PIFs) such as PIF3, PIF4 and PIF5, as well as the expression of various light-dependent microRNAs, in adult mutant plants (, , , , ) were studied. We demonstrate that under blue light, the mutant had maximal expression of most of the studied microRNAs (miR163, miR319, miR398, miR408, miR833) when the PIF4 protein in plants was reduced. This finding indicates that the PIF4 protein is involved in the downregulation of this group of microRNAs.

View Article and Find Full Text PDF

The effect of red (RL, 660 nm) and blue (BL, 450 nm) light on mutant tomato plants was studied. The rates of photosynthesis (Pn) and transpiration, the efficiency of the primary photochemical processes of photosynthesis, the contents of flavonoids and phenolic compounds, the low-molecular-weight antioxidant capacity (Trolox equivalent antioxidant capacity (TEAC)) of leaf extracts, and the expression of light-dependent genes were evaluated. Under RL, BL, and white fluorescent light (WFL), the Pn values decreased in the order: WT > > > , except for the Pn in on BL.

View Article and Find Full Text PDF

The effects of the novel [CuL]Br complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL]Br, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL]Br inhibits photosynthetic oxygen evolution.

View Article and Find Full Text PDF

Engineered nanoparticles (NPs) are considered potential agents for agriculture as fertilizers and growth enhancers. However, their action spectrum differs strongly, depending on the type of NP, its concentrations, and plant species per se, ranging from growth stimulation to toxicity. This work aimed to investigate effects of iron oxide (FeO) NPs on growth, photosynthesis, respiration, antioxidant activity, and leaf mineral content of wheat plants.

View Article and Find Full Text PDF

The impact of a light-transforming covering on photosynthetic activity and growth processes in lettuce and white cabbage plants grown in a glass greenhouse was studied. Plants were covered with agrotextile, a polypropylene (PP) nonwoven spunbond coated with polylactide varnish containing a new organic luminophore (LUM), which absorbs sunlight mainly in the 460-560 nm region and efficiently reradiates it in the red spectral region with a maximum at 660 nm. For comparison, simultaneously two references agrotextiles without LUM or containing a non-luminescent chromophore (ABS) with an absorption spectrum close to that of LUM were as well investigated.

View Article and Find Full Text PDF

Varying the spectral composition of light is one of the ways to accelerate the growth of conifers under artificial conditions for the development of technologies and to obtain sustainable seedlings required to preserve the existing areas of forests. We studied the influence of light of different quality on the growth, gas exchange, fluorescence indices of Chl , and expression of key light-dependent genes of L. seedlings.

View Article and Find Full Text PDF

The impacts of high-intensity light (HIL) (4 h) and UV-B radiation (1 h) on the photosynthetic activity, content of photosynthetic and UV-absorbing pigments (UAPs), activity of antioxidant enzymes (ascorbate peroxidase (APX) and guaiacol-dependent peroxidase (GPX)), content of thiobarbituric acid reactive substances (TBARs), expression of some light-regulated genes in 25-day-old wild type (WT) and the cryptochrome 1 (Cry1) hy4 mutant of A. thaliana Col-0 plants grown under blue light (BL) were studied. HIL and UV-B treatments led to decreases in the photosynthetic rate (P), photochemical activity of PSII (F/F) and PSII performance index (PI) of WT and mutant plants grown under high-intensity BL (HBL) and moderate intensity BL (MBL).

View Article and Find Full Text PDF

The relationship between photosynthesis, pigment accumulation, and the expression of key light-regulated genes in Solanum lycopersicum hp-1, hp-2 and hp-1.2 photomorphogenetic mutants under conditions of high-intensity light (2000 μm (photons) ms) was studied. The hp-2 mutant (LA3006) and the hp-1 mutants (LA4012 and LA3538) are deficient in DET1 (De-etiolated 1 and DDB1 (DNA DAMAGE-BINDING PROTEIN 1), respectively, which are components of the CDD complex (COP10, DDB1, DET1).

View Article and Find Full Text PDF

The effects of high-intensity light (HIL, 4 and 24 h) and UV-B (1 h) on the net photosynthesis rate, activity of photosystem II (PSII), content of photosynthetic pigments, anthocyanin and UV-absorbing pigments as well as the expression of certain light-responsive genes (HY5,CAB1) chalcone synthase (CHS) and main antioxidants enzyme genes (APX1, GPX and GR) in the leaves of phyB and phyA mutant A. thaliana plants were studied. Both UV-B and 4 and 24 h HIL decreased the PSII maximum quantum yield (F/F), PSII performance index (PI), photosynthesis and respiration rates in plants.

View Article and Find Full Text PDF