Publications by authors named "Vladimir Kapustin"

The utilization of ethanol as a component of motor gasolines is an extremely effective way to increase the detonation resistance and environmental properties. In Russia, despite the existing prerequisites for the development of bioethanol industry, the real production of bioethanol is not executed, which is associated with its high price. One of the promising ways of leveling this drawback is the utilization of water-cut waste from its production, involving ethyl alcohol impurity concentrate (EAIC) instead of pure ethanol.

View Article and Find Full Text PDF

Multifunctional additives should be added into motor gasoline to raise the life of engine parts, increase the engine power, as well as reduce the exhaust emission and fuel consumption. This research article proposes new insights to produce modern multifunctional motor gasoline additives. The main components of these additives are detergents, corrosion inhibitors, and friction modifier.

View Article and Find Full Text PDF

The depletion of fuel production and raising ecological issues have paid the progress of biofuels in the entire world. Among different biofuels is introducing renewable fuel additives as prospective beneficial blendstocks towards fulfilling systematic, low-carbon technologies internal combustion engines. This research article proposes a new approach to formulate a Fuzzy modeling for examining various promising alternative renewable oxygenated compounds, including ethanol, isopropanol, MTBE, and 2-methyl furan into heavy hydrocracked gasoline a base fuel.

View Article and Find Full Text PDF

Low-carbon fuel is the main trend in the development of oil refining in leading countries. Likewise, efforts continue optimizing internal combustion engines for increasing their fuel economy, and therefore exhaust emissions will be reduced. This research proposes a novel approach for producing low-carbon high-octane oxygenated environmentally friendly motor gasoline based on low-octane hydrocarbon fractions.

View Article and Find Full Text PDF

Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion.

View Article and Find Full Text PDF