Publications by authors named "Vladimir I Man'ko"

We derive the probability representation of even and odd cat states of two and three qubits. These states are even and odd superpositions of spin-1/2 eigenstates corresponding to two opposite directions along the axis. The probability representation of even and odd cat states of an oscillating spin-1/2 particle is also discussed.

View Article and Find Full Text PDF

This paper delves into the significance of the tomographic probability density function (pdf) representation of quantum states, shedding light on the special classes of pdfs that can be tomograms. Instead of using wave functions or density operators on Hilbert spaces, tomograms, which are the true pdfs, are used to completely describe the states of quantum systems. Unlike quasi-pdfs, like the Wigner function, tomograms can be analysed using all the tools of classical probability theory for pdf estimation, which can allow a better quality of state reconstruction.

View Article and Find Full Text PDF

The Jordan-Schwinger map allows us to go from a matrix representation of any arbitrary Lie algebra to an oscillator (bosonic) representation. We show that any Lie algebra can be considered for this map by expressing the algebra generators in terms of the oscillator creation and annihilation operators acting in the Hilbert space of quantum oscillator states. Then, to describe quantum states in the probability representation of quantum oscillator states, we express their density operators in terms of conditional probability distributions (symplectic tomograms) or Husimi-like probability distributions.

View Article and Find Full Text PDF

We discuss qubit-state superpositions in the probability representation of quantum mechanics. We study probability distributions describing separable qubit states. We consider entangled states on the example of a system of two qubits (Bell states) using the corresponding superpositions of the wave functions associated with these states.

View Article and Find Full Text PDF

A short review constructing the probability representation of quantum mechanics is given, and examples of the probability distributions describing the states of quantum oscillator at temperature and the evolution of quantum states of a charged particle moving in the electric field of an electrical capacitor are considered. Explicit forms of time-dependent integrals of motion, linear in the position and momentum, are used to obtain varying probability distributions describing the evolving states of the charged particle. Entropies corresponding to the probability distributions of initial coherent states of the charged particle are discussed.

View Article and Find Full Text PDF

The quantizer-dequantizer formalism is used to construct the probability representation of quantum system states. Comparison with the probability representation of classical system states is discussed. Examples of probability distributions describing the system of parametric oscillators and inverted oscillators are presented.

View Article and Find Full Text PDF

The superposition states of two qubits including entangled Bell states are considered in the probability representation of quantum mechanics. The superposition principle formulated in terms of the nonlinear addition rule of the state density matrices is formulated as a nonlinear addition rule of the probability distributions describing the qubit states. The generalization of the entanglement properties to the case of superposition of two-mode oscillator states is discussed using the probability representation of quantum states.

View Article and Find Full Text PDF

We investigate a system of two identical and distinguishable spins 1/2, with a direct magnetic dipole-dipole interaction, in an external magnetic field. Constraining the hyperfine tensor to exhibit axial symmetry generates the notable symmetry properties of the corresponding Hamiltonian model. In fact, we show that the reduction of the anisotropy induces the invariance of the Hamiltonian in the 3×3 subspace of the Hilbert space of the two spins in which S^2 invariably assumes its highest eigenvalue of 2.

View Article and Find Full Text PDF

The Wigner and tomographic representations of thermal Gibbs states for one- and two-mode quantum systems described by a quadratic Hamiltonian are obtained. This is done by using the covariance matrix of the mentioned states. The area of the Wigner function and the width of the tomogram of quantum systems are proposed to define a temperature scale for this type of states.

View Article and Find Full Text PDF

The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied.

View Article and Find Full Text PDF

The review of new formulation of conventional quantum mechanics where the quantum states are identified with probability distributions is presented. The invertible map of density operators and wave functions onto the probability distributions describing the quantum states in quantum mechanics is constructed both for systems with continuous variables and systems with discrete variables by using the Born's rule and recently suggested method of dequantizer-quantizer operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms), harmonic oscillator and free particle are studied in detail.

View Article and Find Full Text PDF

In the differential approach elaborated, we study the evolution of the parameters of Gaussian, mixed, continuous variable density matrices, whose dynamics are given by Hermitian Hamiltonians expressed as quadratic forms of the position and momentum operators or quadrature components. Specifically, we obtain in generic form the differential equations for the covariance matrix, the mean values, and the density matrix parameters of a multipartite Gaussian state, unitarily evolving according to a Hamiltonian H ^ . We also present the corresponding differential equations, which describe the nonunitary evolution of the subsystems.

View Article and Find Full Text PDF

The evolution of an open system is usually associated with the interaction of the system with an environment. A new method to study the open-type system evolution of a qubit (two-level atom) state is established. This evolution is determined by a unitary transformation applied to the qutrit (three-level atom) state, which defines the qubit subsystems.

View Article and Find Full Text PDF

We study an analog of Bayes' formula and the nonnegativity property of mutual information for systems with one random variable. For single-qudit states, we present new entropic inequalities in the form of the subadditivity and condition corresponding to hidden correlations in quantum systems. We present qubit states in the quantum suprematism picture, where these states are identified with three probability distributions, describing the states of three classical coins, and illustrate the states by Triada of Malevich's squares with areas satisfying the quantum constraints.

View Article and Find Full Text PDF

A new geometric representation of qubit and qutrit states based on probability simplexes is used to describe the separability and entanglement properties of density matrices of two qubits. The Peres-Horodecki positive partial transpose (ppt) -criterion and the concurrence inequalities are formulated as the conditions that the introduced probability distributions must satisfy to present entanglement. A four-level system, where one or two states are inaccessible, is considered as an example of applying the elaborated probability approach in an explicit form.

View Article and Find Full Text PDF

The positivity conditions of the relative entropy between two thermal equilibrium states ρ[over ̂]_{1} and ρ[over ̂]_{2} are used to obtain upper and lower bounds for the subtraction of their entropies, the Helmholtz potential and the Gibbs potential of the two systems. These limits are expressed in terms of the mean values of the Hamiltonians, number operator, and temperature of the different systems. In particular, we discuss these limits for molecules that can be represented in terms of the Franck-Condon coefficients.

View Article and Find Full Text PDF