Acta Crystallogr B Struct Sci Cryst Eng Mater
February 2020
The crystal structure of a new superconductor UTe has been investigated using single-crystal neutron diffraction for the first time at the low temperature (LT) of 2.7 K, just above the superconducting transition temperature of ∼1.6 K, in order to clarify whether the orthorhombic structure of type Immm (No.
View Article and Find Full Text PDFSpin ices are exotic phases of matter characterized by frustrated spins obeying local "ice rules," in analogy with the electric dipoles in water ice. In two dimensions, one can similarly define ice rules for in-plane Ising-like spins arranged on a kagome lattice. These ice rules require each triangle plaquette to have a single monopole and can lead to different types of orders and excitations.
View Article and Find Full Text PDFFor a symmetry-consistent theoretical description of the ferroelectric phase of BaMnGeO melilite compound, a precise knowledge of its crystal structure is a prerequisite. Here we report results of single-crystal neutron diffraction experiments on BaMnGeO at room (300 K) and low (10 K) temperatures. The structural model based on the tetragonal space group P4̅2 m describes the BaMnGeO symmetry both at room and low temperatures.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2016
In the antiferromagnetic ground state, below TN ≃ 5.7 K, Ca2CoSi2O7 exhibits strong magnetoelectric coupling. For a symmetry-consistent theoretical description of this multiferroic phase, precise knowledge of its crystal structure is a prerequisite.
View Article and Find Full Text PDFSynthetic Co(2)SiO(4) crystallizes in the olivine structure (space group Pnma) with two crystallographically non-equivalent Co positions and shows antiferromagnetic ordering below 50 K. We have investigated the temperature variation of the Co(2)SiO(4) magnetic structure by means of non-polarized and polarized neutron diffraction for single crystals. Measurements with non-polarized neutrons were made at 2.
View Article and Find Full Text PDFSynthetic Co2SiO4 has an olivine structure with isolated SiO4 groups (space group Pnma) and shows magnetic ordering below 50 K. Single-crystal neutron diffraction was applied to determine precise crystal structure parameters at low temperatures. No structural phase transition was revealed in the temperature range 2.
View Article and Find Full Text PDF