Publications by authors named "Vladimir Gurvich"

In 1965, Jack Edmonds characterized pairs of graphs and with a bijection between their edge sets that form a pair of dual graphs realizing the vertices and countries of a map embedded in a surface. A necessary condition is that, if = (d, …, d) and = (t,…, t) denote the degree sequences of two such graphs, then , where is the number of edges in each of the two graphs and is the Euler characteristic of the surface. However, this condition is not sufficient, and it is an open question to characterize bi-vectors () that are , that is, that can be realized as the degree sequences of pairs and of surface-embedded graphs.

View Article and Find Full Text PDF

White outbred female rats were exposed intranasally to 50-µL of suspension of lead oxide nanoparticles (PbO NPs) at a concentration of 0.5 mg/mL thrice a week during six weeks. A control group of rats was administered deionized water in similar volumes and conditions.

View Article and Find Full Text PDF

Exposure to lead is associated with an increased risk of cardiovascular diseases. Outbred white male rats were injected with lead acetate intraperitoneally three times a week and/or were forced to run at a speed of 25 m/min for 10 min 5 days a week. We performed noninvasive recording of arterial pressure, electrocardiogram and breathing parameters, and assessed some biochemical characteristics.

View Article and Find Full Text PDF

Our studies of exposure to binary mixtures of nanoparticles (TiO + SiO; TiO + AlO and SiO + AlO) based on mathematical modelling show that their combined subchronic toxicity can either be of an additive type or deviate from it depending on the outcome, dose ratio, and levels of effect. To characterize the type of toxicity of ternary mixtures of nanoparticles, we successfully tested a previously developed approach for assessing the combined toxicity of metal ions. In this approach, the effects are classified by a null, positive, or negative change in the toxicity of binary nanoparticle mixtures when modeled against the toxicity of the third agent added.

View Article and Find Full Text PDF

toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm.

View Article and Find Full Text PDF

Rats were exposed to nickel oxide nano-aerosol at a concentration of 2.4 ± 0.4 µg/m in a "nose only" inhalation setup for 4 h at a time, 5 times a week, during an overall period of 2 weeks to 6 months.

View Article and Find Full Text PDF

The authors propose to consider as hormesis phenomenon not only a realization of the Arndt-Schulze rule but any non-monotonic dose-response relationship for a certain outcome that is characterized by changing direction of a response between adjacent ranges of doses of an initiator of this response, the number of such ranges being two or more. This approach is illustrated with results of several in vitro experiments on different established cell lines exposed to CdS or PbS nanoparticles.

View Article and Find Full Text PDF

Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different and experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals.

View Article and Find Full Text PDF

Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes.

View Article and Find Full Text PDF

Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m during 5 days for 4 h a day in a nose-only setup.

View Article and Find Full Text PDF

Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects.

View Article and Find Full Text PDF

The paper retraces the development of a mechanistic multicompartmental system model describing particle retention in lungs under chronic inhalation exposures. This model was first developed and experimentally tested for various conditions of exposure to polydisperse dusts of SiO or TiO. Later on it was successfully used as a basis for analyzing patterns in the retention of nanoparticles having different chemical compositions (FeO, SiO, NiO).

View Article and Find Full Text PDF

Rats were exposed to nickel oxide nanoparticles (NiO-NP) inhalation at 0.23 ± 0.01 mg/m³ for 4 h a day 5 times a week for up to 10 months.

View Article and Find Full Text PDF

A moderate subchronic lead intoxication was observed in male rats after repeated intraperitoneal injections of lead acetate. Right ventricular trabeculae and papillary muscles were isolated for in vitro studying of the contraction-relaxation cycle under isotonic and physiological loading. The contractile function of the myocardium was also assessed by measuring the velocity of thin filament movement over myosin.

View Article and Find Full Text PDF

Outbred male rats were repeatedly injected IP with sub-lethal doses of lead acetate 3 times a week during 5 weeks. They developed an explicit, even if moderate, lead intoxication characterized by typical hematological and some other features. The next day after the last injection the heart of each animal was excised, and the trabecules and papillary muscles from the right ventricle were used for modeling in vitro isometric (with varying starting length of the preparation) regimes of the contraction-relaxation cycle with different preloads.

View Article and Find Full Text PDF

During 2009-2017 we have studied nanoparticles of elemental silver or gold and of iron, copper, nickel, manganese, lead, zinc, aluminium and titanium oxides (Me-NPs) using, in most cases, a single low-dose intratracheal instillation 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment and, in all cases, repeated intraperitoneal injections in non-lethal doses to induce subchronic intoxications assessed by a lot of toxicodynamic and toxicokinetic features. We have also studied the same effects for a number of relevant combinations of these Me-NPs and have revealed some important patterns of their combined toxicity. Besides, we have carried out long-term inhalation experiments with FeO, NiO and amorphous SiO nano-aerosols.

View Article and Find Full Text PDF

Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.

View Article and Find Full Text PDF

Assessment of cumulative health risks associated with the widely observed combined effects of two or more metals and their compounds on the organism has the toxicology of mixtures as its scientific basis although there is no full match between such assessment and this basis while some of the contradictions between them are of a fundamental nature. This state of things may be explained not only by simplifications characteristic of the generally recognized methodology of risk assessment but also by extreme complexity of the theory of combined toxicity, the most essential issues of which are considered by authors on the basis of literary and, mostly, their own previously published data.

View Article and Find Full Text PDF

While engineered SiO nanoparticle toxicity is being widely investigated, mostly on cell lines or in acute animal experiments, the practical importance of as well as the theoretical interest in industrial condensation aerosols with a high SiO particle content seems to be neglected. That is why, to the best of our knowledge, long-term inhalation exposure to nano-SiO has not been undertaken in experimental nanotoxicology studies. To correct this data gap, female white rats were exposed for 3 or 6 months 5 times a week, 4h a day to an aerosol containing predominantly submicron (nanoscale included) particles of amorphous silica at an exposure concentration of 2.

View Article and Find Full Text PDF

Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.

View Article and Find Full Text PDF

The purpose of this paper is to overview and summarize previously published results of our experiments on white rats exposed to either a single intratracheal instillation or repeated intraperitoneal injections of silver, gold, iron oxide, copper oxide, nickel oxide, and manganese oxide nanoparticles (NPs) in stable water suspensions without any chemical additives. Based on these results and some corroborating data of other researchers we maintain that these NPs are much more noxious on both cellular and systemic levels as compared with their 1 μm or even submicron counterparts. However, within the nanometer range the dependence of systemic toxicity on particle size is intricate and non-unique due to complex and often contra-directional relationships between the intrinsic biological aggressiveness of the specific NPs, on the one hand, and complex mechanisms that control their biokinetics, on the other.

View Article and Find Full Text PDF