The rapidly increasing and vast quantities of biomedical reports, each containing numerous entities and rich information, represent a rich resource for biomedical text-mining applications. These tools enable investigators to integrate, conceptualize, and translate these discoveries to uncover new insights into disease pathology and therapeutics. In this protocol, we present CaseOLAP LIFT, a new computational pipeline to investigate cellular components and their disease associations by extracting user-selected information from text datasets (e.
View Article and Find Full Text PDFThe search for new strategies for better understanding cardiovascular (CV) disease is a constant one, spanning multitudinous types of observations and studies. A comprehensive characterization of each disease state and its biomolecular underpinnings relies upon insights gleaned from extensive information collection of various types of data. Researchers and clinicians in CV biomedicine repeatedly face questions regarding which types of data may best answer their questions, how to integrate information from multiple datasets of various types, and how to adapt emerging advances in machine learning and/or artificial intelligence to their needs in data processing.
View Article and Find Full Text PDFProteomics is, by definition, comprehensive and large-scale, seeking to unravel ome-level protein features with phenotypic information on an entire system, an organ, cells, or organisms. This scope consistently involves and extends beyond single experiments. Multitudinous resources now exist to assist in making the results of proteomics experiments more findable, accessible, interoperable, and reusable (FAIR), yet many tools are awaiting to be adopted by our community.
View Article and Find Full Text PDFTafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling.
View Article and Find Full Text PDF